Skip to main content

Events that Commit Neurons to Die After Trophic Factor Deprivation

  • Conference paper
Neuronal Death by Accident or by Design

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 107 Accesses

Summary

Nerve growth factor (NGF) deprivation in neonatal sympathetic neurons induces two parallel processes: 1) a protein synthesis-dependent, caspase-independent translocation of BAX from the cytosol to mitochondria, followed by mitochondrial membrane integration and loss of cytochrome c; and 2) the development of competence-to-die, which requires neither macromolecular synthesis nor BAX expression. Activation of both signaling pathways is required for caspase activation and apoptosis in immature sympathetic neurons.

The identities of the gene products required for the translocation of BAX and for its subsequent integration and mediation of cytochrome c release (presumably via multimerization and pore formation) remain unknown. Recently, we have identified one such “thanatin”: BIM, a member of the BH3only, proapoptotic subfamily of the BCL-2 family of proteins.

NGF deprivation rapidly induces expression of the extra-long splice variant of BIM, BIMEL, upstream of the BAX/BCL-2 and caspase checkpoints. Other findings indicate that the induction of BIM may constitute a unique hallmark of neuronal apoptosis. Moreover, Bim deletion confers transient protection against cytochrome c release and neuronal apoptosis, suggesting that BIM, and perhaps other BH3-only proteins, serve partially redundant functions upstream of BAX-mediated cytochrome c release and caspase activation.

The events responsible for committing sympathetic neurons to die after trophic factor withdrawal remain unclear. NGF-deprived cells become committed to die, as measured by the inability of cells to be rescued by NGF readdition, at the time of cytochrome c release. However, caspase inhibition by either pharmacological or genetic means extends commitment to death from the point of cytochrome c release to the subsequent point of mitochondrial depolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amarante-Mendes GP, Finucane DM, Martin SJ, Cotter TG, Salvesen GS, Green DR (1998a) Antiapoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death Differ 5: 298–306

    Article  PubMed  CAS  Google Scholar 

  • Amarante-Mendes GP, Naekyung Kim C, Liu L, Huang Y, Perkins CL, Green DR, Bhalla K (1998b) Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome c and activation of caspase-3. Blood 91: 1700–1705

    PubMed  CAS  Google Scholar 

  • Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou J-C (1997) Inhibition of Bax channel-forming activity by Bd-2. Science 277: 370–372

    Article  PubMed  CAS  Google Scholar 

  • Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou J-C (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345: 271–278

    Article  PubMed  CAS  Google Scholar 

  • Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, Adams JM, Strasser A (1999) Proapoptotic Bc1–2 relative Bim required for certain apoptotic responses, leukocyte homeostatic, and to preclude autoimmunity. Science 286: 1735–1738

    Article  PubMed  CAS  Google Scholar 

  • Bradham CA, Qian T, Streetz K, Trautwein C, Brenner DA, Lemasters JJ (1998) The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol 18: 6353–6364

    PubMed  CAS  Google Scholar 

  • Brunet CL, Gunby RH, Benson RSP, Hickman JA, Watson AJM, Brady G (1998) Commitment to cell death measured by loss of clonogenicity is separable from the appearance of apoptotic markers. Cell Death Differ 5: 107–115

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Deshmukh M, D’Costa A, DeMaro JA, Gidday JM, Shah A, Sun Y, Jacquin MF, Johnson EM Jr, Holtzman DM (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101: 1992–1999

    Article  PubMed  CAS  Google Scholar 

  • Coughlin MD, Collins MB (1985) Nerve growth factor-independent development of embryonic mouse sympathetic neurons in dissociated cell culture. Dev Biol 110: 392–401

    Article  PubMed  CAS  Google Scholar 

  • Deckwerth TL, Johnson EM Jr. (1993) Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor. J Cell Biol 123: 1207–1222

    Article  PubMed  CAS  Google Scholar 

  • Deckwerth TL, Elliott JL, Knudson CM, Johnson EM Jr., Snider WD, Korsmeyer SJ (1996) Bax is required for neuronal death after trophic factor deprivation and during development. Neuron 17: 401–411

    Article  PubMed  CAS  Google Scholar 

  • Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou J-C (1999) Bid-induced conformational change in Bax is responsible for mitochondrial cytochrome c release eduring apoptosis. J Cell Biol 144: 891–901

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh M, Johnson EM Jr (1998) Evidence of a novel event during neuronal death: Development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21: 695–705

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh M, Johnson EM Jr (2000) Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J Cell Biol 150: 131–143

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh M, Vasilakos J, Deckwerth TL, Lampe PA, Shivers BD, Johnson EM Jr (1996) Genetic and metabolic status of NGF-deprived sympathetic neurons saved by an inhibitor of ICE family proteases. J Cell Biol 135: 1341–1354

    Article  PubMed  CAS  Google Scholar 

  • Edwards SN, Buckmaster AE, Tolkovsky AM (1991) The death programme in cultured sympathetic neurones can be suppressed at the posttranslational level by nerve growth factor, cyclic AMP, and depolarization. J Neurochem 57: 2140–2143

    Article  PubMed  CAS  Google Scholar 

  • Ellis RE, Yuan JY, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7: 663–698

    Article  PubMed  CAS  Google Scholar 

  • Eskes R, Antonsson B, Osensand A, Montessuit S, Richter C, Sadoul R, Mazzei G, Nichols A, Martinou J-C (1998) Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mgt+ ions. J Cell Biol 143: 217–224

    Article  PubMed  CAS  Google Scholar 

  • Eskes R, Desagher S, Antonsson B, Martinou J-C (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20: 929–935

    Article  PubMed  CAS  Google Scholar 

  • Estus S, Zaks WJ, Freeman RS, Gruda M, Bravo R, Johnson EM Jr (1994) Altered gene expression in neurons during programmed cell death: Identification of c-jun as necessary for neuronal apoptosis. J Cell Biol 127: 1717–1727

    Google Scholar 

  • Finucane DM, Bossy-Wetzel E, Waterhouse N, Cotter TG, Green DR (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bc1-XL. J Biol Chem 274: 2225–2233

    Article  PubMed  CAS  Google Scholar 

  • Freeman RS, Estus S, Johnson EM Jr. (1994) Analysis of cell cycle-related gene expression in post-mitotic neurons: Selective induction of cyclin D1 during programmed cell death. Neuron 12: 343–355

    Article  PubMed  CAS  Google Scholar 

  • Gibson RM (1999) Caspase activation is downstream of commitment to apoptosis of Ntera-2 neuronal cells. Exp Cell Res 251: 203–212

    Article  PubMed  CAS  Google Scholar 

  • Goping IS, Gross A, Lavoie JN, Nguyen M, Jemmerson R, Roth K, Korsmeyer SJ, Shore GC (1998) Regulated targeting of bax to mitochondria. J Cell Biol 143: 207–215

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Greenlund LJ, Korsmeyer SJ, Johnson EM Jr (1995) Role of Bd-2 in the survival and function of developing and mature sympathetic neurons. Neuron 15: 649–661

    Article  PubMed  CAS  Google Scholar 

  • Gross A, Jockel J, Wei MC, Korsmeyer SJ (1998) Enforced dimerization of Bax results in its translocation, mitochondrial dysfunction, and apoptosis. EMBO J 17: 3878–3885

    Article  PubMed  CAS  Google Scholar 

  • Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA (1997) Inhibition of interleukin 1 beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 94: 2007–2012

    Article  PubMed  CAS  Google Scholar 

  • Heiskanen KM, Bhat MB, Wang HW, Ma J, Nieminen AL (1999) Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J Biol Chem 274: 5654–5658

    Article  PubMed  CAS  Google Scholar 

  • Hsu YT, Wolter KG, Youle RJ (1997) Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc Natl Acad Sci USA 94: 3668–3672

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi K, Tsuda M, Imai Y, Wanaka A, Takagi T, Tohyama M (1997) Molecular cloning of a novel polypeptide, dp5, induced during programmed neuronal death. J Biol Chem 272: 1884218 848

    Google Scholar 

  • Inohara N, Ding LY, Chen S, Nunez G (1997) Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bd-2 and Bcl-XL. EMBO J 16: 1686–1694

    Article  PubMed  CAS  Google Scholar 

  • Johnson EM Jr, Chang JY, Koike T, Martin DP (1989) Why do neurons die when deprived of trophic factor? Neurobiol Aging 10: 549–552

    Article  PubMed  Google Scholar 

  • Jürgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95: 4997–5002

    Article  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    Article  PubMed  CAS  Google Scholar 

  • Kluck RM, Bossywetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: A primary site for Bd-2 regulation of apoptosis. Science 275: 1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Knudson CM, Korsmeyer SJ (1997) Bd-2 and Bax function independently to regulate cell death. Nat Genetics 16: 358–363

    Article  CAS  Google Scholar 

  • Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270: 96–99

    Article  PubMed  CAS  Google Scholar 

  • Koike T, Martin DP, Johnson EM Jr (1989) Role of Cat+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: Evidence that levels of internal Caz+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc Natl Acad Sci USA 86: 6421–6425

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6: 513–519

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R, Booker B (1960) Destruction of the sympathetic ganglia in mammals by an antiserum to the nerve growth-promoting factor. Proc Natl Acad Sci USA 46: 384–391

    Article  PubMed  CAS  Google Scholar 

  • Li HL, Zhu H, Xu CJ, Yuan JY (1998) Cleavage of Bid by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501

    Article  PubMed  CAS  Google Scholar 

  • Li MW, Ona VO, Guegan C, Chen MH, Jackson-Lewis V, Andrews LJ, Olszewski AJ, Stieg PE, Lee JP, Przedborski S, Friedlander RM (2000) Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86: 147–157

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang XD (1998) Bid, a Bd-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490

    Article  PubMed  CAS  Google Scholar 

  • Martin DP, Schmidt RE, DiStefano PS, Lowry OH, Carter JG, Johnson EM Jr (1988) Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 106: 829–844

    Article  PubMed  CAS  Google Scholar 

  • Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, Martinou J-C (1999) The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144: 883–889

    Article  PubMed  CAS  Google Scholar 

  • Marzo I, Brenner C, Zamzami N, Jürgensmeier JM, Susin SA, Vieira HLA, Prevost MC, Xie ZH, Matsuyama S, Reed JC, Kroemer G (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027–2031

    Article  PubMed  CAS  Google Scholar 

  • McCarthy MJ, Rubin LL, Philpott KL (1997) Involvement of caspases in sympathetic neuron apoptosis. J Cell Sci 110: 2165–2173

    PubMed  CAS  Google Scholar 

  • Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetics of programmed cell death in C. elegans: Past, present and future. Trend Genet 14: 410–416

    Google Scholar 

  • Miller TM, Moulder KL, Knudson CM, Creedon DJ, Deshmukh M, Korsmeyer SJ, Johnson EM Jr (1997) Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J Cell Biol 139: 205–217

    Article  PubMed  CAS  Google Scholar 

  • Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB (1997) Bcl-XL forms an ion channel in synthetic lipid membranes. Nature 385: 353–357

    Article  PubMed  CAS  Google Scholar 

  • Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW (1996) X-ray and NMR structure of human Bcl-XL, an inhibitor of programmed cell death. Nature 381: 335–341

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95: 14681–14686

    Article  PubMed  CAS  Google Scholar 

  • Neame SJ, Rubin LL, Philpott KL (1998) Blocking cytochrome c activity within intact neurons inhibits apoptosis. J Cell Biol 142: 1583–1593

    Article  PubMed  CAS  Google Scholar 

  • O’Connor L, Strasser A, O’Reilly LA, Hausmann G, Adams JM, Cory S, Huang DC (1998) Bim: a novel member of the Bd-2 family that promotes apoptosis. EMBO J 17: 384–395

    Article  PubMed  Google Scholar 

  • Ohta T, Kinoshita T, Naito M, Nozaki T, Masutani M, Tsuruo T, Miyajima A (1997) Requirement of the caspase-3/CPP32 protease cascade for apoptotic death following cytokine deprivation in hematopoietic cells. J Biol Chem 272: 23 111–23116

    Google Scholar 

  • Oltvai ZN, Korsmeyer SJ (1994) Checkpoints of dueling dimers foil death wishes. Cell 79:189–192 Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bd-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619

    Google Scholar 

  • Ona VO, Li M, Vonsattel JP, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li XJ, Stieg PE, Yuan J, Penney JB, Young AB, Cha JH, Friedlander RM (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Ann Rev Neurosci 14: 453–501

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly LA, Cullen L, Moriishi K, O’Connor L, Huang DC, Strasser A (1998) Rapid hybridoma screening method for the identification of monoclonal antibodies to low-abundance cytoplasmic proteins. Biotech 25: 824–830

    Google Scholar 

  • O’Reilly LA, Cullen L, Visvader J, Lindeman GJ, Print C, Bath ML, Huang DC, Strasser A (2000) The proapoptotic BH3-only protein Bim is expressed in hematopoietic, epithelial, neuronal, and germ cells. Am J Pathol 157: 449–461

    Article  PubMed  Google Scholar 

  • Putcha GV, Deshmukh M, Johnson EM Jr (1999) Bax translocation is a critical event in neuronal apoptosis: Regulation by neuroprotectants, Bd-2, and caspases. J Neurosci 19: 7476–7485

    PubMed  CAS  Google Scholar 

  • Putcha GV, Deshmukh M, Johnson EM Jr (2000) Inhibition of apoptotic signaling cascades causes loss of trophic factor dependence during neuronal maturation. J Cell Biol 149: 1011–1018

    Article  PubMed  CAS  Google Scholar 

  • Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Molecular Cell 3: 287–296

    Article  PubMed  CAS  Google Scholar 

  • Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C (1998) Bd-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391: 496–499

    Article  PubMed  CAS  Google Scholar 

  • Rydel RE, Greene LA (1988) cAMP analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor. Proc Natl Acad Sci USA 85: 1257–1261

    Google Scholar 

  • Saikumar P, Dong Z, Patel Y, Hall K, Hopfer U, Weinberg JM, Venkatachalam MA (1998) Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 17: 3401–3415

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Korsmeyer SJ, Schlesinger PH (2000) Bax-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2: 553–555

    Article  PubMed  CAS  Google Scholar 

  • Schendel SL, Xie Z, Montai MO, Matsuyama S, Montai M, Reed JC (1997) Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 94: 5113–5118

    Article  PubMed  CAS  Google Scholar 

  • Schindler KS, Latham CB, Roth KA (1997) Bax deficiency prevents the increased cell death of immature neurons in Bcl-X-deficient mice. J Neurosci 17: 3112–3119

    Google Scholar 

  • Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G, Korsmeyer SJ (1997) Comparison of the ion channel characteristics of proapoptotic Bax and antiapoptotic Bd-2. Proc Nati Acad Sci USA 94:11 357–11 362

    Google Scholar 

  • Stennicke HR, Salvesen GS (2000) Caspases: controlling intracellular signals by protease zymogen activation. Biochim Biophys Acta 1477: 299–306

    Article  PubMed  CAS  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 14561462

    Google Scholar 

  • Troy CM, Stefanis L, Prochiantz A, Greene LA, Shelanski ML (1996) The contrasting roles of Ice family proteases and interleukin-1-ß in apoptosis induced by trophic factor withdrawal and by copper/zinc superoxide dismutase down-regulation. Proc Natl Acad Sci USA 93: 5635–5640

    Article  PubMed  CAS  Google Scholar 

  • Werth JL, Deshmukh M, Cocabo J, Johnson EM, Rothman SM (2000) Reversible physiological alterations in sympathetic neurons deprived of NGF but protected from apoptosis by caspase inhibition or Bax deletion. Exp Neurol 161: 203–211

    Article  PubMed  CAS  Google Scholar 

  • White FA, Kellerpeck CR, Knudson CM, Korsmeyer SJ, Snider WD (1998) Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J Neurosci 18: 1428–1439

    PubMed  CAS  Google Scholar 

  • Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139: 1281–1292

    Article  PubMed  CAS  Google Scholar 

  • Xiang JL, Chao DT, Korsmeyer SJ (1996) Bax-induced cell death may not require interleukin 1beta-converting enzyme-like proteases. Proc Natl Acad Sci USA 93: 14559–14563

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Fletcher GC, Tolkovsky AM (1999) Autophagy is activated by apoptotic signalling in sympathetic neurons: An alternative mechanism of death execution. Mol Cell Neurosci 14: 180–198

    Google Scholar 

  • Yang J, Liu XS, Bhalla K, Kim CN, Ibrado AM, Cai JY, Peng TI, Jones DP, Wang XD (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275: 1129–1132

    Article  PubMed  CAS  Google Scholar 

  • Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400: 886–891

    Article  PubMed  CAS  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Putcha, G.V., Deshmukh, M., Johnson, E.M. (2001). Events that Commit Neurons to Die After Trophic Factor Deprivation. In: Henderson, C.E., Green, D.R., Mariani, J., Christen, Y. (eds) Neuronal Death by Accident or by Design. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04333-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04333-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07517-9

  • Online ISBN: 978-3-662-04333-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics