Skip to main content

Advertisement

Log in

Dissociation of JNK Activation from Elevated Levels of Reactive Oxygen Species, Cytochrome c Release, and Cell Death in NGF-Deprived Sympathetic Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Withdrawal of nerve growth factor (NGF) from sympathetic neurons causes their apoptotic death. Activation of c-Jun NH2-terminal kinase (JNK) may contribute to this death by the induction and phosphorylation of pro-apoptotic Bcl-2 proteins, such as Bax, that are involved in cytochrome c release from mitochondria and reactive oxygen species (ROS) production. Induction of either JNK or ROS may stimulate the other, and both may regulate release of apoptogenic factors from the mitochondria. In order to discern the relationship between JNK and ROS in apoptosis, we treated NGF-deprived, mouse sympathetic neurons with a JNK inhibitor and examined the effect on several important apoptotic events. Block of JNK activation prevented induction of c-Jun expression and resulted in a dose-dependent, yet surprisingly modest, increase in cell survival after 48 h of NGF deprivation. JNK suppression was also not sufficient to prevent the elevation in ROS or the release of cytochrome c from the mitochondria in NGF-deprived sympathetic neurons. Bax deletion prevents apoptotic death of NGF-deprived neurons by preventing release of cytochrome c from their mitochondria. It also prevents increased ROS on NGF deprivation. However, we found that induction of c-Jun in cells lacking Bax was equivalent to that in wild-type neurons. Our results suggest that while JNK activation plays an important role in many forms of apoptosis, it may not be a crucial regulator of Bax-dependent events involved in the apoptotic death of mouse sympathetic neurons deprived of NGF and that ROS is not involved in its activation in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanchez-Perez I, Murguia JR, Perona R (1998) Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene 16:533–540

    Article  CAS  PubMed  Google Scholar 

  3. Yu R, Chen C, Mo YY, Hebbar V, Owuor ED, Tan TH, Kong AN (2000) Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J Biol Chem 275:39907–39913

    Article  CAS  PubMed  Google Scholar 

  4. Harris CA, Deshmukh M, Tsui-Pierchala B, Maroney AC, Johnson EM Jr (2002) Inhibition of the c-Jun N-terminal kinase signaling pathway by the mixed lineage kinase inhibitor CEP-1347 (KT7515) preserves metabolism and growth of trophic factor-deprived neurons. J Neurosci 22:103–113

    CAS  PubMed  Google Scholar 

  5. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNF-α-induced death and sustained JNK activation by inhibiting MAP-kinase phosphatases. Cell 120:649–661

    Article  CAS  PubMed  Google Scholar 

  6. Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, Masutani H, Yodoi J et al (2005) Amyloid beta induces neuronal cell death through ROS-mediated ASK-1 activation. Cell Death Differ 12:19–24

    Article  CAS  PubMed  Google Scholar 

  7. Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780:1325–1336

    Article  CAS  PubMed  Google Scholar 

  8. Katagiri K, Matsuzawa A, Ichijo H (2010) Regulation of apoptosis signal-regulating kinase 1 in redox signaling. Methods Enzymol 474:277–288

    Article  CAS  PubMed  Google Scholar 

  9. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B, Alix S, Youle RJ et al (2003) JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38:899–914

    Article  CAS  PubMed  Google Scholar 

  11. Harris CA, Johnson EM Jr (2001) BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem 276:37754–37760

    CAS  PubMed  Google Scholar 

  12. Esposti MD (2002) The roles of bid. Apoptosis 7:433–440

    Article  CAS  PubMed  Google Scholar 

  13. Oleinik NV, Krupenko NI, Krupenko SA (2007) Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene 26:7222–7230

    Article  CAS  PubMed  Google Scholar 

  14. Deshmukh M, Kuida K, Johnson EM Jr (2000) Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J Cell Biol 150:131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M (2003) Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol 163:789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirkland RA, Saavedra GM, Cummings BS, Franklin JL (2010) Bax regulates production of superoxide in both apoptotic and nonapoptotic neurons: role of caspases. J Neurosci 30:16114–16127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Mol Cell Biol 19:8469–8478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deckwerth TL, Easton RM, Knudson CM, Korsmeyer SJ, Johnson EM Jr (1998) Placement of the BCL2 family member BAX in the death pathway of sympathetic neurons activated by trophic factor deprivation. Exp Neurol 152:150–162

    Article  CAS  PubMed  Google Scholar 

  19. Kirkland RA, Adibhatla RM, Hatcher JF, Franklin JL (2002a) Loss of cardiolipin and mitochondria during programmed neuronal death: evidence of a role for lipid peroxidation and autophagy. Neuroscience 115:587–602

    Article  CAS  PubMed  Google Scholar 

  20. Kirkland RA, Windelborn JA, Kasprzak JM, Franklin JL (2002b) A Bax-induced pro-oxidant state is critical for cytochrome c release during programmed neuronal death. J Neurosci 22:6480–6490

    CAS  PubMed  Google Scholar 

  21. Eilers A, Whitfield J, Babij C, Rubin LL, Ham J (1998) Role of the Jun kinase pathway in the regulation of c-Jun expression and apoptosis in sympathetic neurons. J Neurosci 18:1713–1724

    CAS  PubMed  Google Scholar 

  22. Borutaite V, Brown GC (2007) Mitochondrial regulation of caspase activation by cytochrome oxidase and tetramethylphenylenediamine via cytosolic cytochrome c redox state. J Biol Chem 282:31124–31130

    Article  CAS  PubMed  Google Scholar 

  23. Vaughn AE, Deshmukh M (2008) Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol 10:1477–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li M, Xu JX, Wang AJ (2008) Redox state of cytochrome c regulates cellular ROS and caspase cascade in permeabilized cell model. Protein Pept Lett 15:200–205

    Article  CAS  PubMed  Google Scholar 

  25. Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270:96–99

    Article  CAS  PubMed  Google Scholar 

  26. Johnson MI, Argiro V (1983) Techniques in the tissue culture of rat sympathetic neurons. Methods Enzymol 103:334–347

    Article  CAS  PubMed  Google Scholar 

  27. Kirkland R, Saavedra GM, Franklin JL (2007) Rapid activation of antioxidant defenses by nerve growth factor suppresses reactive oxygen species during neuronal apoptosis: evidence for a role in cytochrome c redistribution. J Neurosci 27:11315–11326

    Article  CAS  PubMed  Google Scholar 

  28. Royall JA, Ischiropoulos H (1993) Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302:348–355

    Article  CAS  PubMed  Google Scholar 

  29. Kirkland RA, Franklin JL (2001) Evidence for redox regulation of cytochrome c release during programmed neuronal death: antioxidant effects of protein synthesis and caspase inhibition. J Neurosci 21:1949–1963

    CAS  PubMed  Google Scholar 

  30. Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL, Vasquez-Vivar J, Kalyanaraman B (2005) Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci U S A 102:5727–5732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103:15038–15043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson-Cadwell LI, Jekabsons MB, Wang A, Polster BM, Nicholls DG (2007) ‘Mild uncoupling’ does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. J Neurochem 101:1619–1631

    Article  CAS  PubMed  Google Scholar 

  33. Newbern J, Taylor A, Robinson M, Lively MO, Milligan CE (2007) c-Jun N-terminal kinase signaling regulates events associated with both health and degeneration in motoneurons. Neuroscience 147:680–692

    Article  CAS  PubMed  Google Scholar 

  34. Barnat M, Enslen H, Propst F, Davis RJ, Soares S, Nothias F (2010) Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. J Neurosci 30:7804–7816

    Article  CAS  PubMed  Google Scholar 

  35. Coffey ET (2014) Nuclear and cytosolic JNK signaling in neurons. Nat Rev Neurosci 15:285–299

    Article  CAS  PubMed  Google Scholar 

  36. Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development. Curr Opin Cell Biol 10:205–219

    Article  CAS  PubMed  Google Scholar 

  37. Frisch SM, Vuori K, Kelaita D, Sicks S (1996) A role for Jun-N-terminal kinase in anoikis; suppression by bcl-2 and crm. A J Cell Biol 135:1377–1382

    Article  CAS  PubMed  Google Scholar 

  38. Hsuuw YD, Chang CK, Chan WH, Yu JS (2005) Curcumin prevents methylglyoxal-induced oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts. J Cell Physiol 205:379–386

    Article  CAS  PubMed  Google Scholar 

  39. Wang SF, Yen JC, Yin PH, Chi CW, Lee HC (2008) Involvement of oxidative stress-activated JNK signaling in the methamphetamine-induced cell death of human SH-SY5Y cells. Toxicology 246:234–241

    Article  CAS  PubMed  Google Scholar 

  40. Watson A, Eilers A, Lallemand D, Kyriakis J, Rubin LL, Ham J (1998) Phosphorylation of c-Jun is necessary for apoptosis induced by survival signal withdrawal in cerebellar granule neurons. J Neurosci 18:751–762

    CAS  PubMed  Google Scholar 

  41. Kharbanda S, Saxena S, Yoshida K, Pandey P, Kaneki M, Wang Q, Cheng K, Chen Y et al (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-xL in response to DNA damage. J Biol Chem 275:322–327

    Article  CAS  PubMed  Google Scholar 

  42. Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Munshi N, Kharbanda S et al (2003) JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 278:17593–17596

    Article  CAS  PubMed  Google Scholar 

  43. Schwabe RF, Uchinami H, Qian T, Bennett BL, Lemasters JJ, Brenner DA (2004) Differential requirement for c-Jun NH2-terminal kinase in TNF-alpha and Fas-mediated apoptosis in hepatocytes. FASEB J 18:720–722

    Article  CAS  PubMed  Google Scholar 

  44. Wang LH, Paden AJ, Johnson EM Jr (2005) Mixed-lineage kinase inhibitors require the activation of Trk receptors to maintain long-term neuronal trophism and survival. J Pharmacol Exp Ther 312:1007–1019

    Article  CAS  PubMed  Google Scholar 

  45. Bruckner SR, Tammariello SP, Kuan CY, Flavell RA, Rakic P, Estus S (2001) JNK3 contributes to c-Jun activation and apoptosis but not oxidative stress in nerve growth factor-deprived sympathetic neurons. J Neurochem 78:298–303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health grant R03 AG051205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Franklin.

Ethics declarations

This work was approved by the Institutional Animal Care and Use Committee of the University of Georgia (animal use protocol no. A2014 03-005-Y3-A2). The university animal care and use program is accredited by Association for Assessment and Accreditation of Laboratory Animal Care ( AAALAC International ), is licensed by the USDA, and maintains an Assurance of Compliance with the Public Health Service.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McManus, M.J., Franklin, J.L. Dissociation of JNK Activation from Elevated Levels of Reactive Oxygen Species, Cytochrome c Release, and Cell Death in NGF-Deprived Sympathetic Neurons. Mol Neurobiol 55, 382–389 (2018). https://doi.org/10.1007/s12035-016-0332-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0332-2

Keywords

Navigation