Skip to main content

Wirkung von Lithium auf die Bewegungsaktivität von Versuchstieren

  • Chapter
Die Lithiumtherapie Nutzen, Risiken, Alternativen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Borison RL, Sabelli HC, Maple PJ, Havdala HS, Diamond BI (1978) Lithium prevention of amphetamine-induced ‘manic’ excitement and of reserpine-induced ‘depression’ in mice. Possible role of 2-phenylethylamine. Psychopharmacology (Berlin) 59:259–262

    Article  PubMed  CAS  Google Scholar 

  • Brodie BB (1965) Some ideas on the mode of action of imipramine-type antidepressants. In: Marks V, Pare CMB (eds) The scientific basis of drug therapy in psychiatry. Pergamon, Oxford, pp 127–146

    Google Scholar 

  • Cappeliez P, White N (1981) Lithium increases selective attention in rats. Pharmac Biochem Behav 15:81–88

    Article  CAS  Google Scholar 

  • Carroll BJ, Sharp PT (1971) Opposite effects on amine-mediated excitement. Science 172:1355–1357

    Article  PubMed  CAS  Google Scholar 

  • Davies C, Sanger DJ, Steinberg H, Tomkiewicz M, U’Prichard DC (1974) Lithium and alphamethyl-p-tyrosine prevent ‘manic’ activity in rodents. Psychopharmacologia 36:263–274

    Article  PubMed  CAS  Google Scholar 

  • D’Encarnacao PS, Anderson K (1970) Effects of lithium pretreatment on amphetamine and DMI-tetrabenazine produced psychomotor behavior. Dis Nerv Syst 31:494–496

    PubMed  Google Scholar 

  • Ebstein RP, Eliashar S, Belmaker RH (1980) The effect of chronic lithium on adenylate cyclase and dopamine-mediated animal behaviors. In: Usdin E, Sourkes TL, Youdim MBH (eds) Enzymes and neurotransmitters in mental disease. Wiley & Sons, New York, pp 395–409

    Google Scholar 

  • Engelmann W (1973) A slowing down of circadian rhythm by lithium ions. Z Naturf 28:733–736

    CAS  Google Scholar 

  • Fessier RG, Sturgeon RD, London SF, Meltzer H Y (1982) Effects of lithium on behavior induced by phenylcyclidine and amphetamine in rats. Psychopharmacology 78:373–376

    Article  Google Scholar 

  • Flemenbaum A (1975) Lithium and amphetamine hyperactivity in rats. Differential effect of d and l isomers? Neuropsychobiology 1:325–334

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Ushizima I, Ono N (1975) Modification by lithium of behavioral responses to methamphetamine and tetrabenazine. Psychopharmacologia 42:243–248

    Article  PubMed  CAS  Google Scholar 

  • Gray P, Solomon J, Dunphy M, Carr F, Hession M (1976) Effects of lithium on open field behavior in ‘stressed’ and ‘unstressed’ rats. Psychopharmacology (Berlin) 48:277–281

    Article  PubMed  CAS  Google Scholar 

  • Greenspan K, Aronoff MS, Bogdanski DF (1970) Effects of lithium carbonate on turnover and metabolism of norepinephrine in the rat brain — correlation to gross behavioral effects. Pharmacology 3:129–136

    Article  CAS  Google Scholar 

  • Harrison-Read PE (1978) Models of Hthium action based on behavioral studies using animals. In: Johnson FN, Johnson S (eds) Lithium in medical practice. MTP Press, Lancaster, pp 289–303

    Google Scholar 

  • Hines G, Poling TH (1984) Lithium effects on active and passive avoidance behavior in the rat. Psychopharmacology 82:78–82

    Article  PubMed  CAS  Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Hubbard B, Sekerke HJ (1972) Cholinergic reversal of manic symptoms. Lancet 1:1236–1237

    Article  PubMed  CAS  Google Scholar 

  • Janowsky DS, Abrams AA, Groom GP, Judd LL, Cloptin P (1979) Lithium administration antagonizes cholinergic behavioral effects in rodents. Psychopharmacology (Berlin) 63:147–150

    Article  CAS  Google Scholar 

  • Johnson FN (1972) Dissociation of vertical and horizontal components of activity in rats treated with lithium chloride. Experientia 28:533–535

    Article  PubMed  CAS  Google Scholar 

  • Johnson FN (1976) Lithium effect upon components of activity in rats. Experientia 32:212–213

    Article  PubMed  CAS  Google Scholar 

  • Johnson FN (1979) The psychopharmacology of lithium. Neurosci Biobehav Rev 3:15–30

    Article  CAS  Google Scholar 

  • Judd A, Parker J, Jenner FA (1975) The role of noradrenaline, dopamine and 5-hydroxy-tryptamine in the hyperactivity response resulting from the administration of tranylcypromine to rats pretreated with lithium or rubidium. Psychopharmacologia 42:73–77

    Article  PubMed  CAS  Google Scholar 

  • Kiseleva IP, Lapin (1969) Antagonistic effect of Hthium carbonate on 5-hydroxy-tryptophan-induced head-twitches in mice. Pharmacol Res Commun 1:108–114

    Article  CAS  Google Scholar 

  • Kripke DF, Wyborney VG (1980) Lithium slows rat circadian activity rhythms. Life Sci 26:1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Lal S, Sourkes TL (1972) Potentiation and inhibition of the amphetamine stereotype in rats by neuroleptics and other agents. Arch Int Pharmacodyn Ther 199:289–301

    PubMed  CAS  Google Scholar 

  • Matussek N (1971) Clinical and animal experiments concerning the function of brain catecholamines. Int Pharmacopsychiat 6:170–186

    CAS  Google Scholar 

  • Matussek N, Linsmayer M (1968) The effect of lithium and amphetamine on desmethylimi-pramine-Ro-4–1284 induced motor hyperactivity. Life Sci 7:371–375

    Article  PubMed  CAS  Google Scholar 

  • Matussek N, Müller S (1975) Effects of chronic lithium treatment on behaviours and on norepinephrine metabolism in rat brain in a norepinephrine-deficient state. In: Boissier JR, Hippius H, Pichot P (eds) Neuropsychopharmacology. Excerpta Medica, Amsterdam, pp 612–616

    Google Scholar 

  • Murphy DL (1977) Animal models for mania. In: Hanin I, Usdin E (eds) Animal models in psychiatry and neurology. Pergamon, Oxford, pp 211–223

    Google Scholar 

  • Ozawa H, Miyauchi T (1977) Potentiating effect of lithium chloride on methamphetamine- induced stereotypy in mice. Eur J Pharmacol 41:213–216

    Article  PubMed  CAS  Google Scholar 

  • Perkinson E, Ruckart R, Davanzo JP (1969) Pharmacological and biochemical comparison of lithium and reference antidepressant. Proc Soc Exp Biol Med 131:685–689

    PubMed  CAS  Google Scholar 

  • Pletscher A, Brossi A, Gey KF (1962) Benzoquinolizine derivatives: A new class of monoamine decreasing drugs with psychotropic action. Int Rev Neurobiol 4:275–306

    Article  Google Scholar 

  • Rastogi RB, Singhai RL (1977) Lithium: Modification of behavioral activity and brain biogenic amines in developing hyperthyroid rat. J Pharmac Exp Ther 201:92–102

    CAS  Google Scholar 

  • Sanger DJ, Steinberg H (1974) Inhibition of scopolamine-induced stimulation of Y-maze activity by alpha-methyl-/?-tyrosine and by Hthium. Eur J Pharmacol 28:344–349

    Article  PubMed  CAS  Google Scholar 

  • Sanghvi IS, Gershon S (1977) Animal test models for prediction of cHnical antidepressant activity. In: Hanin I, Usdin E (eds) Animal models in psychiatry and neurology. Pergamon, Oxford, pp 151–169

    Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: A review of supporting evidence. Amer J Psychiatry 122:509–522

    CAS  Google Scholar 

  • Segal DS, Callaghan M, Mandell AJ (1975) Alterations in behaviour and catecholamine biosynthesis induced by lithium. Nature 254:58–59

    Article  PubMed  CAS  Google Scholar 

  • Segawa T, Nakano M (1974) Brain serotonin metabolism in lithium treated rats. Jap J Pharmac 24:319–324

    Article  CAS  Google Scholar 

  • Smith DF (1975) Biogenic amines and the effect of short-term lithium administration on open field activity in rats. Psychopharmacologia 41:295–300

    Article  PubMed  CAS  Google Scholar 

  • Smith DF (1976 a) Reexamination of vertical activity in rats treated with lithium chloride. Experientia 32:1–28

    Article  Google Scholar 

  • Smith DF (1976 b) Effects of tranylcypromine stereoisomers, clorgyline and deprenyl on open field activity during long-term administration. Psychopharmacology (Berlin) 50:81–84

    Article  PubMed  CAS  Google Scholar 

  • Smith DF (1976 c) Locomotor activity and plasma, red blood cell and cerebral cortex lithium concentration in inbred mice given lithium carbonate. Pharmacol Biochem Behav 5:379–382

    Article  PubMed  CAS  Google Scholar 

  • Smith DF (1976d) Antagonistic effect of lithium chloride on L-dopa-induced locomotor activity in rats. Pharmacol Res Commun 8:575–579

    Article  PubMed  CAS  Google Scholar 

  • Smith DF (1977 a) Effects of lithium on behavior: critical analysis of a school of thought. Compr Psychiatry 18:449–452

    Article  PubMed  CAS  Google Scholar 

  • Smith DF (1977 b) Lithium and animal behavior, vol 1. Eden, Montreal

    Google Scholar 

  • Smith DF (1978 a) Learned aversion and rearing movements in rats given LiCl, PbCl, and NaCl. Experientia 34:1200–1201

    Article  PubMed  CAS  Google Scholar 

  • Smith DF (1978 b) The effects of Hthium on phenylethylamine behavior in rats are counteracted by monoamine oxidase A and B inhibitors. Arch Int Pharmacodyn Ther 233:221–226

    PubMed  CAS  Google Scholar 

  • Smith DF (1981) Central and peripheral effects of lithium on amphetamine-induced hyperactivity in rats. Pharmacol Biochem Behav 14:439–442

    Article  PubMed  CAS  Google Scholar 

  • Smith DF (1983 a) Lithium and carbamazepine: Effects on learned taste aversion and open field behavior in rats. Pharmacol Biochem Behav 18:483–488

    Article  PubMed  CAS  Google Scholar 

  • Smith DF (1983 b) Lithium and animal behavior, vol 2. Human Sciences, New York Smith DF (1984) Introduction to stereopsychopharmacology. In: Smith DF (ed) Handbook of stereoisomers: Drugs in psychopharmacology. CRC Press, Boca Raton, pp 11–30

    Google Scholar 

  • Smith DF, Amdisen A (1983) Central effects of hthium in rats: Lithium levels, body weight and water intake. Acta Pharmacol Toxicol 52:81–85

    Article  CAS  Google Scholar 

  • Smith DF, Shimizu M (1976) Effects of alpha-methyltyrosine and parachlorophenylalanine on open field behavior in rats given tranylcypromine stereoisomers and lithium carbonate. Pharmacol Biochem Behav 5:515–518

    Article  PubMed  CAS  Google Scholar 

  • Smith DF, Smith HB (1973) The effect of prolonged lithium administration on activity, reactivity and endurance in the rat. Psychopharmacologia 30:83–88

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Barnejee SP, Yanamura HI, Greenberg D (1974) Drugs, neurotransmitters and schizophrenia. Science 184:1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Stula AD (1974) Excitatory behavior induced by combined pargyline-reserpine treatment an experimental model for mania? In: Bohacek N, Mihovilovic M (eds) Psikofarmakologija, 3rd ed. Med Naklada, Zagreb, pp 57–65

    Google Scholar 

  • Tadano T, Sakurada S, Kikara K (1973) Behavioral pharmacological study of alkali metal (report 1). Effects of lithium on the central nervous system. Folia Pharmac Jap 69:75–85

    Article  CAS  Google Scholar 

  • U’Prichard DC, Steinberg H (1972) Selective effects of lithium on two forms of spontaneous activity. Brit J Pharmacol 44:349–350

    Google Scholar 

  • Ushijima I, Ono N, Furukawa T (1972) Influences on the behavioral action of methamphet-amine and tetrabenazine. Jap J Pharmac 22:95

    Google Scholar 

  • Wahlström G (1973) Drugs which can induce earlier roosting in the self-selected circadian rhythm of the canary. Israel J Med Sci 9:(Suppl) 72–76

    PubMed  Google Scholar 

  • Whybrow PC, Prange AJ jr, Treadway CR (1969) Mental changes accompanying thyroid gland dysfunction. Arch Gen Psychiatry 20:48–63

    Article  PubMed  CAS  Google Scholar 

  • Wielosz M (1976) The effect of lithium chloride on the activity of some psychotropic drugs. Pol J Pharmacol Pharm 28:189–198

    PubMed  CAS  Google Scholar 

  • Wielosz M (1979) Lithium, stimulants and behavior. In: Schou M, Strömgren E (eds) Origin, prevention and treatment of affective disorders. Academic Press, London, pp 69–82

    Google Scholar 

  • Wittrig J, Woods AE, Anthony EJ (1970) Mechanisms of lithium action. Dis Nerv Syst 31:767–771

    PubMed  CAS  Google Scholar 

  • Wolff J (1975) The endocrine effects of lithium. In: Boissier JR, Hippius H, Pichot P (eds) Neuropsychopharmacology. Excerpta Medica, Amsterdam, pp 621–628

    Google Scholar 

  • Wolthuis OL, de Vroome H, Vanwersch RAP (1975) Automatically determined effects of lithium, scopolamine and methamphetamine on motor activity of rats. Pharmacol Biochem Behav 3:515–518

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, D.F. (1986). Wirkung von Lithium auf die Bewegungsaktivität von Versuchstieren. In: Müller-Oerlinghausen, B., Greil, W. (eds) Die Lithiumtherapie Nutzen, Risiken, Alternativen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96935-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96935-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-96936-2

  • Online ISBN: 978-3-642-96935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics