Skip to main content

Biochemische und zellphysiologische Effekte von Lithiumionen

  • Chapter
Die Lithiumtherapie Nutzen, Risiken, Alternativen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Ahluwalia P, Singhai RL (1981) Monoamine uptake into synaptosomes from various regions of rat brain following lithium administration and withdrawal. Neuropharmacology 20:483–487

    Article  PubMed  CAS  Google Scholar 

  • Aldenhoff JB, Lux HD (1984) Lithium- und Kalzium-abhängige Zellfunktionen. Der Beitrag eines membranphysiologischen Untersuchungsansatzes zur Erklärung therapeutischer Lithiumwirkungen. Fortschr Neurol Psychiat 52:152–163

    Article  PubMed  CAS  Google Scholar 

  • Allikmets LH, Stanley M, Gershon S (1979) The effect of lithium on chronic haloperidol enhanced apomorphin aggression in rats. Life Sci 25:165–170

    Article  PubMed  CAS  Google Scholar 

  • Angrist B, Gershon S (1979) Variable attenuation of amphetamine effects by lithium. Amer J Psychiat 136:806–810

    PubMed  CAS  Google Scholar 

  • Arora RC, Fessier RG, Meltzer H Y (1983) Effects on lithium carbonate on serotonin uptake in rat blood platelets. Prog Neuropsychopharmacol Biol Psychiat 7:39–45

    Article  CAS  Google Scholar 

  • Banay-Schwartz M, Wajda I J, Manigault I, DeGuzman T, Lajtha A (1982) Lithium: Effect on (3H)spiperone binding, ionic content, and amino acid levels in the brain of rats. Neurochem Res 7:179–189

    Article  PubMed  CAS  Google Scholar 

  • Belmaker RH (1981) Receptors, adenylate cyclase, depression and lithium. Biol Psychiat 16:333–350

    Google Scholar 

  • Belmaker RH, Zohar J, Levy A (1982) Unindirectionality of lithium stabilization of adrenergic and cholinergic receptors. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of hthium. Excerpta Medica, Amsterdam Oxford Princeton, pp 146–153

    Google Scholar 

  • Belmaker RH, Lerer B, Klein E, Newman M, Dick E (1983) Clinical implications of research on the mechanism of action of Hthium. Prog Neuropsychopharmacol Biol Psychiat 7:287–296

    Article  CAS  Google Scholar 

  • Berl S, Clarke DD (1975) Lithium and amino acid metabolism. In: Johnson FN (ed) Lithium research and therapy. Academic Press, London, pp 425–441

    Google Scholar 

  • Berrettini WH, Nürnberger JI Jr, Hare TA, Simmons-AUing S, Gershon ES, Post RM (1983) Reduced plasma and CSF gamma-aminobutyric acid in affective illness: Effect of lithium carbonate. Biol Psychiat 18:185–194

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1980) Receptors and calcium signalling. Trends Pharmacol Sci 2:419–424 Berridge MJ (1984) Inositol triphosphate and diacylglycerol as second messengers. Biochem. J 220:345–360

    Google Scholar 

  • Birch NJ (1976) Possible mechanism for biological action of hthium. Nature 264:681

    Article  PubMed  CAS  Google Scholar 

  • Birch NJ, Jenner FA (1973) The distribution of lithium and its effects on the distribution and excretion of other ions in the rat. Brit J Pharmacol 47:586–594

    CAS  Google Scholar 

  • Bloom FE, Baetge G, Deyo S et al (1983) Chemical and physiological aspects of the actions of lithium and antidepressant drugs. Neuropharmacology 22:359–365

    Article  PubMed  CAS  Google Scholar 

  • Brewerton TD, Reus VI (1983) Lithium carbonate and L-tryptophan in the treatment of bipolar and schizoaffective disorders. Amer J Psychiat 140:757–760

    PubMed  CAS  Google Scholar 

  • Bunney WE Jr, Garland BL (1983) Possible receptor effects of chronic lithium administration. Neuropharmacology 22:367–372

    Article  PubMed  CAS  Google Scholar 

  • Bunney WE Jr, Murphy DL (eds) (1976) The neurobiology of lithium. Neurosci Res Prog Bull 14:111–206

    Google Scholar 

  • Bunney WE Jr, Post RM, Amdisen AE, Kopanda RT (1977) A neuronal receptor sensitivity mechanism in affective illness. A review of evidence. Commun Psychopharmacol 1:393–405

    PubMed  Google Scholar 

  • Calker D van, Hamprecht B (1980) Effects of neurohormones on glia cells. In: Fedoroff S, Hertz L (eds) Advances in cellular neurobiology, vol 1. Academic Press, New York, pp 32–67

    Google Scholar 

  • Cameron OG, Smith CB (1980) Comparison of acute and chronic lithium treatment on 3H-norepinephrine uptake by rat brain slices. Psychopharmacology 67:81–85

    Article  PubMed  CAS  Google Scholar 

  • Canessa M, Adragna N, Solomon HS, Conolly TM, Tosteson DC (1980) Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med 302:772–776

    Article  PubMed  CAS  Google Scholar 

  • Colburn RW, Goodwin FK, Bunney WE Jr, Davis JM (1967) Effect of lithium on the uptake of noradrenaline by synaptosomes. Nature 215:1395–1397

    Article  PubMed  CAS  Google Scholar 

  • Cooper TB, Gershon S, Kline NS, Schou M (eds) (1979) Lithium: Controversies and unresolved issues. Excerpta Medica, Amsterdam

    Google Scholar 

  • Cornford EM, Braun LD, Oldendorf WH (1978) Carrier mediated blood-brain barrier transport of choline and certain choline analogs. J Neurochem 30:299–308

    Article  PubMed  CAS  Google Scholar 

  • Corrodi H, Fuxe K, Hökfelt T, Schou M (1967) The effect of lithium on cerebral monoamine neurons. Psychopharmacologia 11:345–353

    Article  PubMed  CAS  Google Scholar 

  • Corrodi H, Fuxe K, Schou M (1969) The effect of prolonged lithium administration on cerebral monoamine neurons in the rat. Life Sci 8:643–651

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Sibley DR (1981) Receptor adaptations to centrally acting drugs. Ann Rev Pharmacol Toxicol 21:357–391

    Article  CAS  Google Scholar 

  • Davis KL, Berger PA, Hollister LE, Barchas JD (1978) Cholinergic involvement in mental disorders. Life Sci 22:1865–1872

    Article  PubMed  CAS  Google Scholar 

  • Deutsch SI, Stanley M, Peselow ED, Banay-Schwartz M (1983) Glycine: A possible role in lithiums action and affective illness. Neuropsychobiology 9:215–218

    Article  PubMed  CAS  Google Scholar 

  • Doms E, Pandey GN, Shaughnessy R, Gaviria M, Val E, Ericksen S, Davis JM (1979) Lithium transport across red cell membrane: A cell membrane abnormality in manic-depressive illness. Science 205:932–934

    Article  Google Scholar 

  • Downes CP (1983) Inositol phospholipids and neurotransmitter-receptor signalling mechanisms. Trends Neuro Sci 6:313–316

    CAS  Google Scholar 

  • Dubovsky SL, Franks RD (1983) Intracellular calcium ions in affective disorders: A review and an hypothesis. Biol Psychiat 18:781–797

    PubMed  CAS  Google Scholar 

  • Duhm J, Becker BF (1977) Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole. Pflügers Arch 367:211–219

    Article  PubMed  CAS  Google Scholar 

  • Duhm J, Becker BF, Greil W (1979) Na+ dependent Li+ countertransport and the lithium distribution across the human erythrocyte membrane: An introduction. In: Obiols J, Gallus C, Monoclüs EG, Pujol J (eds) Biological psychiatry today. North-Holland Biomedical, Elsevier, pp 1137–1142

    Google Scholar 

  • Ebstein R, Belmaker R, Grunhaus L, Rimon R (1976) Lithium inhibition of adrenaline-stimulated adenylate cyclase in humans. Nature 259:411–413

    Article  PubMed  CAS  Google Scholar 

  • Ebstein RP, Eliashar S, Belmaker RH, Ben-Uriah Y, Yehuda S (1980) Chronic lithium treatment and dopamine-mediated behavior. Biol Psychiat 15:459–467

    PubMed  CAS  Google Scholar 

  • Ehrlich BE, Diamond JM (1980) Lithium, membranes, and manic-depressive illness. J Membr Biol 52:187–200

    Article  PubMed  CAS  Google Scholar 

  • Eichner D, Opitz K (1974) Ãœber den natürlichen Lithiumgehalt tierischer Gewebe. Histochemistry 42:295–300

    Article  PubMed  CAS  Google Scholar 

  • Emrich HM (1982) Prophylactic therapies in affective disorders: Mode of action from a clinical point of view. In: Emrich HM; Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, pp 202–214

    Google Scholar 

  • Emrich HM, Zerssen D von, Kissling W, Möller H J, Windorfer A (1980) Effect of sodium valproate on mania. The GABA-hypothesis of affective disorders. Arch Psychiat Nervenkr 229:1–16

    Article  PubMed  CAS  Google Scholar 

  • Emrich HM, Aldenhoff JB, Lux HD (eds) (1982) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam Oxford Princeton

    Google Scholar 

  • Fessier RG, Sturgeon RD, London SF, Meltzer H Y (1982) Effects of lithium on behaviour induced by phencyclidine and amphetamine in rats. Psychopharmacology 78:373–376

    Article  Google Scholar 

  • Friedman E, Dallob A, Levine G (1979) The effect of long-term lithium treatment on reserpine-induced supersensitivity in dopaminergic and serotonergic transmission. Life Sci 25: 1263–1266

    Article  PubMed  CAS  Google Scholar 

  • Gallager DW, Bunney WE Jr (1979) Failure of chronic lithium treatment to block tricyclic antidepressant-induced 5-HT supersensitivity. Naunyn-Schmiedeberg’s Arch Pharmacol 307:129–133.

    Article  CAS  Google Scholar 

  • Gallager DW, Pert A, Bunney WE Jr (1978) Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium. Nature 273:309–312

    Article  PubMed  CAS  Google Scholar 

  • Garver DL, Davis JM (1979) Biogenic amine hypotheses of affective disorders. Life Sci 24:383–394

    Article  PubMed  CAS  Google Scholar 

  • Gorkin RA, Richelson E (1979) Lithium ion accumulation by cultured glioma cells. Brain Res 171:365–368

    Article  PubMed  CAS  Google Scholar 

  • Gorkin RA, Richelson E (1981) Lithium transport by mquse neuroblastoma cells. Neuropharmacology 20:791–801

    Article  PubMed  CAS  Google Scholar 

  • Gottesfeld Z, Ebstein BS, Samuel D (1971) Effect of lithium on concentration of glutamate and G AB A levels in amygdala and hypothalamus in rat. Nature New Biol 234:124–125

    PubMed  CAS  Google Scholar 

  • Greil W (1982) Zu den Mechanismen der Verteilung von Lithium zwischen Erythrozyten und Plasma. Nervenarzt 53:461–466

    PubMed  CAS  Google Scholar 

  • Greil W, Eisenried F (1978) Lithium uptake by erythrocytes of lithium-treated patients: Interin-dividual differences. In: Johnson FN, Johnson S (eds) Lithium in medical practice. MTP Press, Lancaster, pp 415–420

    Google Scholar 

  • Greil W, Eisenried F, Becker BF, Duhm J (1977) Interindividual differences in the Na+-dependent Li+-distribution ratio across the red cell membrane amongst Li +-treated patients. Psychopharmacology 53:19–26

    Article  PubMed  CAS  Google Scholar 

  • Greil W, Becker BF, Duhm J (1979) On the relevance of the red blood cell/plasma lithium ratio. In: Cooper TB, Gershon S, Kline NS, Schou M (eds) Lithium: Controversies and unresolved issues. Excerpta Medica, Amsterdam, pp 209–217

    Google Scholar 

  • Haag M, Haag H, Eisenried F, Greil W (1984) RBC-choline: Changes by lithium and relation to prophylactic response. Acta Psychiat Scand 70:389–399

    Article  PubMed  CAS  Google Scholar 

  • Hamprecht B (1977) Structural, electrophysiological and pharmacological properties of neuroblastoma x glioma hybrid cells in cell culture. Int Rev Cytol 49:99–170

    Article  PubMed  CAS  Google Scholar 

  • Hanin I, Mallinger AG, Kopp V, Himmelhoch JM, Neil JF (1980 a) Mechanism of lithium- induced elevation in red blood cells choline content: An in vitro analysis. Commun Psycho-pharmacol 4:345–355

    CAS  Google Scholar 

  • Hanin I, Kopp V, Spiker DG, Neil JF, Shaw DH, Kupfer DJ (1980 b) RBC and plasma choline levels in control and depressed individuals: A critical evaluation. Psychiat Res 3:345–355

    Article  CAS  Google Scholar 

  • Hendler NH (1978) Lithium pharmacology and physiology. In: Iversen LL, Iversen SD, Snyder SH (eds) Affective disorders: Drug action in animals and man. Plenum, New York London (Handbook of psychopharmacology, vol 14, pp 233–273)

    Google Scholar 

  • Hermoni M, Lerer B, Ebstein RP, Belmaker RH (1980) Chronic lithium prevents reserpine-induced supersensitivity of adenylate cyclase. J Pharm Pharmacol 32:510–511

    Article  PubMed  CAS  Google Scholar 

  • Hetmar O, Nielsen M, Braestrup C (1983) Decreased number of benzodiazepine receptors in frontal cortex of rat brain following long-term lithium treatment. J Neurochem 41:217–221

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1972) The permeability of the sodium channel to metal cations in myelinated nerve. J Gen Physiol 59:637–658

    Article  PubMed  CAS  Google Scholar 

  • Honchar MP, Olney JW, Sherman WR (1983) Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 220:323–325

    Article  PubMed  CAS  Google Scholar 

  • Hong JS, Tilson HA, Yoshikawa K (1983) Effects of lithium and haloperidol administration on the rat brain levels of substance P. J Pharmacol Exp Ther 224:590–593

    PubMed  CAS  Google Scholar 

  • Horrobin DF (1979) Lithium as a regulator of prostaglandin synthesis. In: Cooper TB, Gershon S, Kline NS, Schou M (eds) Lithium: Controversies and unresolved issues. Excerpta Medica, Amsterdam, pp 854–880

    Google Scholar 

  • Hunt GE, Beilharz GR, Storlien LH, Kuchel PW, Johnson GF (1983) The effect of lithium on rat erythrocyte choline, glycine and glutathione levels. Biochem Pharmacol 32:2981–2983

    Article  PubMed  CAS  Google Scholar 

  • Janka Z, Szentistványi I, Juhász A, Rimanóczy A (1980) Difference in lithium transport between neurons and glia in primary culture. Neuropharmacology 19:827–829

    Article  PubMed  CAS  Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 11:632–635

    Article  Google Scholar 

  • Janowsky DS, Abrams AA, Groom GP, Judd LL, Cloptin P (1979) Lithium administration antagonizes cholinergic behavioral effects in rodents. Psychopharmacology 63:147–150

    Article  PubMed  CAS  Google Scholar 

  • Janowsky DS, Risch SC, Gillin JC (1983) Adrenergic-cholinergic balance and the treatment of affective disorders. Prog Neuro Psychopharmacol Biol Psychiat 7:297–307

    Article  CAS  Google Scholar 

  • Jenden DJ, Jope RS, Fraser SL (1980) A mechanism for the accumulation of choline in erythrocytes during treatment with lithium. Comm Psychopharmacol 4:339–344

    CAS  Google Scholar 

  • Jope RS (1979) Effects of lithium treatment in vitro and in vivo on acetylcholine metabolism in rat brain. J Neurochem 33:487–495

    Article  PubMed  CAS  Google Scholar 

  • Jope RS, Jenden DJ, Ehrlich BE, Diamond JM (1978) Choline accumulates in erythrocytes during lithium therapy. New Engl J Med 299:833–834

    PubMed  CAS  Google Scholar 

  • Jope RS, Jenden DJ, Ehrlich BE, Diamond JM, Gosenfeld LF (1980) Erythrocyte choline concentrations are elevated in manic patients. Proc Natl Acad Sci USA 77:6144–6146

    Article  PubMed  CAS  Google Scholar 

  • Kafka MS, Wirz-Justice A, Naber D, Marangos PJ, O’Donohue TL, Wehr TA (1982) Effect of lithium on circadian neurotransmitter receptor rhythms. Neuropsychobiology 8:41–50

    Article  PubMed  CAS  Google Scholar 

  • Kämmen DP van, Murphy DL (1975) Attenuation of the euphoriant and activating effects of d- and 1-amphetamine by lithium carbonate treatment. Psychopharmacologia 44:215–224

    Article  PubMed  Google Scholar 

  • Knapp S (1983) Lithium. In: Grahame-Smith DG, Cowen PJ (eds) Psychopharmacology, Part 1, Preclinical psychopharmacology. Excerpta Medica, Amsterdam, pp 71–106

    Google Scholar 

  • Knapp S, Mandell AJ (1975) Effects of lithium chloride on parameters of biosynthetic capacity for 5-hydroxytryptamine in rat brain. J Pharmacol Exp Ther 193:812–823

    PubMed  CAS  Google Scholar 

  • Levitzki A, Atlas D (1981) A possible molecular mechanism for β-reeeptor desensitization: Experiments and hypotheses. Life Sci 28:661–672

    Article  PubMed  CAS  Google Scholar 

  • Levy A, Zohar J, Belmaker RH (1982) The effect of chronic lithium pretreatment on rat brain muscarinic receptor regulation. Neuropharmacology 21:1199–1201

    Article  PubMed  CAS  Google Scholar 

  • Lingsch C, Martin K (1976) An irreversible effect of Hthium administration to patients. Brit J Pharmac 57:323–327

    CAS  Google Scholar 

  • Maggi A, Enna SJ (1980) Regional alterations in rat neurotransmitter systems following chronic lithium. J Neurochem 34:888–892

    Article  PubMed  CAS  Google Scholar 

  • Michell B (1982) A link between lithium, lipids and receptors? Trends Biochem Sci 7:387–388

    Article  CAS  Google Scholar 

  • Millington WR, McCall AL, Wurtman RJ (1979) Lithium and brain choline levels. New Engl J Med 300:196–197

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi T, Orkawa S, Kitada Y (1980) Effects of lithium chloride on the cholinergic system in different brain regions in mice. Biochem Pharmacol 29:654–657

    Article  PubMed  CAS  Google Scholar 

  • Müller-Oerlinghausen B (1985) Lithium long-term treatment — does it act via serotonin? Pharmacopsychiatry 18:214–217

    Article  PubMed  Google Scholar 

  • Murphy DL, Donnelly C, Moskowitz J (1973) Inhibition by lithium of prostaglandin E and norepinephrine effects on cyclic adenosine monophosphate production in human platelets. Pharmac Therapeut 14:810–814

    CAS  Google Scholar 

  • Olesen OV, Thomsen K (1976) A preventive effect of potassium against fatal Hthium intoxication in rats. Neuropsychobiology 2:112–117

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim G, Ebstein RP, Belmaker RH (1979) Effect of Hthium on the physostigmine-induced behavioral syndrome and plasma cyclic GMP. J Psychiat Res 15:133–138

    Article  PubMed  CAS  Google Scholar 

  • Pandey GN, Dorus E, Davis JM, Tosteson DC (1979) Lithium transport in human red blood cells. Genetic and clinical aspects. Arch Gen Psychiat 36:902–908

    Article  PubMed  CAS  Google Scholar 

  • Pert A, Bunney WE Jr (1982) Chronic Hthium modulates neurotransmitter receptor sensitivity. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam, pp 121–132

    Google Scholar 

  • Pert A, Rosenblatt E, Sivit C, Pert CB, Bunney WE Jr (1978) Long-term treatment with lithium prevents the development of dopamine receptor supersensitivity. Science 201:171–173

    Article  PubMed  CAS  Google Scholar 

  • Pestronk A, Drachman DB (1980) Lithium reduces the number of acetylcholine receptors in skeletal muscle. Science 210:342–343

    Article  PubMed  CAS  Google Scholar 

  • Plenge P, Mellerup ET (1982) 3H-imipramine high-affinity binding sites in rat brain. Effects of imipramine and lithium. Psychopharmacology (Berlin) 77:94–97

    Google Scholar 

  • Poitou P, Bohuon C (1975) Catecholamine metaboHsm in the rat brain after short and long term Hthium administration. J Neurochem 25:535–537

    Article  PubMed  CAS  Google Scholar 

  • Reches A, Wagner HR, Jackson V, Fahn S (1982) Chronic lithium administration has no effect on haloperidol-induced supersensitivity of pre- and postsynaptic dopamine receptors in rat brain. Brain Res 246:172–177

    Article  PubMed  CAS  Google Scholar 

  • Reiser G, Duhm J (1982) Transport pathways for lithium ions in neuroblastoma x glioma hybrid cells at ‘therapeutic’ concentrations of Li +. Brain Res 252:247–258

    Article  PubMed  CAS  Google Scholar 

  • Reiser G, Scholz F, Hamprecht B (1982) Pharmacological and electrophysiological characterization of lithium ion flux through the action potential sodium channel in neuroblastoma x glioma hybrid cells. J Neurochem 39:228–234

    Article  PubMed  CAS  Google Scholar 

  • Richelson E (1977) Lithium ion-entry through the sodium channel of cultured mouse neuroblastoma cells: A biochemical study. Science 196:1001–1002

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt JE, Pert CB, TaUman JF, Pert A, Bunney WE Jr (1979) The effect of imipramine and lithium on a- and ß-reeeptor binding in rat brain. Brain Res 160:186–191

    Article  PubMed  CAS  Google Scholar 

  • Rotman A (1983) Blood platelets in psychopharmacological research. Prog Neuropsychophar-macol Biol Psychiat 7:135–151

    Article  CAS  Google Scholar 

  • Roufogalis BD (1980) Calmodulin: Its role in synaptic transmission. Trends Neuro Sci 3:238–241

    CAS  Google Scholar 

  • Sachar EJ, Baron M (1979) The biology of affective disorders. Ann Rev Neurosci 2:505–518

    Article  PubMed  CAS  Google Scholar 

  • Samples J, Janowsky DS, Pechnick R, Judd RL (1977) Lethal effects of physostigmine plus Hthium in rats. Psychopharmacology 52:307–309

    Article  PubMed  CAS  Google Scholar 

  • Sangdee C, Franz DN (1980) Lithium enhancement of central 5-HT transmission induced by 5-HT-precursors. Biol Psychiat 15:59–68

    PubMed  CAS  Google Scholar 

  • Saneto RP, Srivastava SK, Werrbach-Perez K, Perez-Polo JR (1980) Lithium uptake at physiological ion concentrations in a human clonal neuroblastoma cell line. J Neurochem 34:1520–1521

    Article  PubMed  CAS  Google Scholar 

  • Schou M, Mellerup ET, Rafaelson OJ (1981) Mode of action of lithium. In: Praag H van, Lader MH, Rafaelson OJ, Sachar EJ (eds) Brain mechanism and abnormal behavior — chemistry. Dekker, New York Basel (Handbook of Biological Psychiatry, part IV, pp 805–824)

    Google Scholar 

  • Shaw DM (1975) Lithium and amine metabolism. In: Johnson FN (ed) Lithium research and therapy. Academic Press, London, pp 411–423

    Google Scholar 

  • Staunton DA, Magistretti PJ, Shoemaker WJ, Bloom FE (1982 a) Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum. I. Locomotor activity and behavioral supersensitivity. Brain Res 232:391–400

    Article  PubMed  CAS  Google Scholar 

  • Staunton DA, Magistretti PJ, Shoemaker WJ, Deyo S, Bloom FE (1982 b) Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum. II. No effect on denervation or neuroleptic-induced supersensitivity. Brain Res 232:401–412

    Article  PubMed  CAS  Google Scholar 

  • Sulser F, Vetulani J, Mobley PL (1978) Mode of action of antidepressant drugs. Biochem Pharmacol 27:257–261

    Article  PubMed  CAS  Google Scholar 

  • Swann AC, Heninger GR, Roth RH, Maas JW (1981) Differential effects of short and long-term lithium on tryptophan uptake and serotonergic function in cat brain. Life Sci 28:347–354

    Article  PubMed  CAS  Google Scholar 

  • Szentistványi I, Janka Z, Joó F, Rimanóczy A, Juhász A, Latzkovits L (1979) Na-dependent Li-transport in primary nerve cell cultures. Neurosci Lett 13:157–161

    Article  PubMed  Google Scholar 

  • Tanimoto K, Maeda K, Terada T (1983) Inhibitory effect of lithium on neuroleptic and serotonin receptors in rat brain. Brain Res 265:148–151

    Article  PubMed  CAS  Google Scholar 

  • Treiser S, Kellar KJ (1979) Lithium effect on adrenergic receptor supersensitivity in rat brain. Eur J Pharmacol 58:85–86

    Article  PubMed  CAS  Google Scholar 

  • Treiser SL, Cascio CS, O’Donohue TL, Thoa NB, Jacobowitz DM, Kellar KJ (1981) Lithium increases serotonin release and decreases serotonin receptors in the hippocampus. Science 213:1529–1531

    Article  PubMed  CAS  Google Scholar 

  • Verimer T, Goodale DB, Long JP, Flynn JR (1980) Lithium effects on haloperidol-induced pre-and postsynaptic dopamine receptor supersensitivity. J Pharm Pharmacol 32:665–666

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES (1975) Lithium and acetylcholine metabolism. In: Johnson FN (ed) Lithium research and therapy. Academic Press, London, pp 391–409

    Google Scholar 

  • Yen MH, Reed DJ (1981) Regulation of lithium in cerebrospinal fluid of the cat by the choroid plexus isolated in situ. Arch Int Pharmacodyn 251:217

    PubMed  CAS  Google Scholar 

  • Yuwiler A, Bennett BL, Brammer GL, Geller E (1979) Lithium treatment and tryptophan transport through the blood brain barrier. Biochem Pharmacol 28:2709–2712

    Article  PubMed  CAS  Google Scholar 

  • Zatz M (1979) Low concentrations of lithium inhibit the synthesis of cyclic AMP and cyclic GMP in the rat pineal gland. J Neurochem 32:1315–1321

    Article  PubMed  CAS  Google Scholar 

  • Zohar J, Lerer B, Ebstein RP, Belmaker RH (1982) Lithium does not prevent agonist-induced subsensitivity of human adenylate cyclase. Biol Psychiat 17:343–350

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Calker, D., Greil, W. (1986). Biochemische und zellphysiologische Effekte von Lithiumionen. In: Müller-Oerlinghausen, B., Greil, W. (eds) Die Lithiumtherapie Nutzen, Risiken, Alternativen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96935-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96935-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-96936-2

  • Online ISBN: 978-3-642-96935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics