Skip to main content

Human Papillomavirus Infections of the Genital Tract: Clinical Significance and Diagnosis by Polymerase Chain Reaction

  • Chapter
Diagnosis of Human Viruses by Polymerase Chain Reaction Technology

Part of the book series: Frontiers of Virology ((FRVIROLOGY,volume 1))

Summary

Current data implicate that human papillomavirus (HPV) lesions in the genital tract are frequently associated with precancer lesions and invasive squamous cell carcinomas. Almost 70 different HPV types have been recognized during the past 10 years, and a significant risk for the development of an invasive cancer has been ascribed to infections of the high risk HPV types. On the other hand, spontaneous regression has been histologically confirmed in a significant proportion of genital HPV infections in prospective cohort studies. Of special importance from the epidemiological point of view is the mode of transmission of this virus by sexual contact, thus conferring a potential risk for the development of genital precancer lesions to both sexual partners. Recently, HPV DNA has been detected by different hybridization techniques and PCR in normal squamous epithelium of the genital tract in both sexes, suggesting that these sites of latent HPV infections might act as a reservoir for such infections. In the present review, the clinical significance of genital HPV infections is discussed. The importance of making a distinction between (1) clinically manifest, (2) subclinical, and (3) latent HPV infections is emphasized, and the potentially precancerous nature of the manifest HPV infections is underlined. The applicability and limitations of different diagnostic techniques are discussed with special emphasis on the important role of PCR as the only method capable of disclosing also the subclinical and latent HPV infections. The significance of detecting minute amounts (a few molecules) of HPV DNA is unknown. Many of these PCR-positive results may not represent an infection per se, but rather a tissue surface contamination. Extensive studies are still needed to establish the clinically relevant amounts of viral DNA. Thus, caution should be exercised in labelling as an HPV infection those cases where HPV DNA is detected by PCR alone. It seems clear that the examination and treatment of all patients with even a clinically manifest HPV infection will be an overwhelming task. In the light of the epidemiological data and substantiated by the current PCR results, it is equally obvious that patients with subclinical and latent HPV infections cannot be traced and treated by the currently available facilities. It should be borne in mind, however, that it is not the HPV itself which is harmful to the patients, but the precancer (and cancer) lesions that it causes at various anatomic sites. Thus, in countries where nation-wide mass-screening programmes are effective, the means are available to prevent the development of invasive cervical carcinomas by tracing and eradicating the precancer lesions. The old concept on early detection of cervical precancer lesions still remains valid, despite the role of HPV in genital carcinogenesis. In prevention of cervical cancer worldwide, it will be enormously much more effective to first establish covering mass-screening programmes in the high-risk countries than to introduce sophisticated DNA technology (hybridization tests) or PCR amplification procedures to screen large populations for subclinical and latent HPV infections. It will be of major importance to promptly elucidate the risk factors predisposing the clinically manifest HPV lesions for rapid progression. Although some of these factors are well established by now (i.e., lesion grade and HPV type), additional factors involved in the regulation of the viral life cycle within the cell certainly exist which, hopefully, could be used to better predict the disease outcome of the genital HPV infections in the future.

Our original studies included in this review have been supported in part by a research grant from the Finnish Cancer Society, a research grant from Sigrid Juselius Foundation, a PHS grant no. 5 RO1 CA 42010-03 awarded by the Natlonal Cancer Institute, DHHS, a research grant from the Social Insurance Institution of Finland, a joint research grant from Fabriques de Tabac Reunies S.A., and British-American Tobacco Company Ltd, and by a research contract (#1041051) from the Medical Research Council of the Academy of Finland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrasso R, de Brux J, Croissant O, Orth G (1987) High prevalence of papillomavirus-associated penile intraepithelial neoplasia in sexual partners of women with cervical intraepithelial neoplasia. N Engl J Med 317:916–923

    Article  PubMed  CAS  Google Scholar 

  • Bauer HM, Ting Y, Gréer CE, Chambers JC, Tashiro CJ, Chimera J, Reingold A, Manos MM (1991) Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA 265:472–477

    Article  PubMed  CAS  Google Scholar 

  • Broker TR, Botchan M (1986) Papillomaviruses: retrospectives and prospectives. Cancer Cells 4:17–36

    CAS  Google Scholar 

  • Campion MJ, Singer A, Clarkson PK (1985) Increased risk of cervical neoplasia in consorts of men with penile condylomata acuminata. Lancet i: 943–946

    Article  Google Scholar 

  • Campion MJ, McCane DJ, Cuzick J, Singer A (1986) Progressive potential of mild cervical atypia: progressive cytological, colposcopic, and virological study. Lancet i:238–240

    Google Scholar 

  • Chang FC, Syrjänen S, Nuutinen J, Karjä J, Syrjänen K (1990) Detection of human papillomavirus (HPV) DNA in oral squamous cell carcinomas by in situ hybridization and polymerase chain reaction. Arch Dermatol Res 282:493–497

    Article  PubMed  CAS  Google Scholar 

  • Chang F, Janatuinen E, Pikkarainen P, Syrjänen S, Syrjänen K (1991) Esophageal squamous cell papillomas. Failure to detect human papillomavirus (HPV) DNA by in situ hybridization and polymerase chain reaction (PCR). Scand J Gastroenterol 26:535–543

    PubMed  CAS  Google Scholar 

  • Cornelissen MTE, Tweel JGVD, Struyk AHB, Jebbink MF, Briet M, Noordaa JVD, Schegger JT (1989) Localization of human papillomavirus type 16 DNA using the polymerase chain reaction in the cervix uteri of women with cervical intraepithelial neoplasia. J Gen Virol 70:2555–2562

    Article  PubMed  Google Scholar 

  • de Villiers EM (1989) Heterogeneity of the human papillomavirus group. J Virol 63:4898–4903

    Google Scholar 

  • Evander M, Wadell G (1991) A general primer pair for amplification and detection of genital human papillomavirus types. J Virol Methods 31:239–250

    Article  PubMed  CAS  Google Scholar 

  • Evander M, Bodén E, Bjersing L, Rylander E, Wadell G (1991) Oligonucleotide primers for DNA amplification of the early regions 1, 6, and 7 from human papillomavirus types 6, 11, 16, 18, 31, and 33. Arch Virol 116:221–233

    Article  PubMed  CAS  Google Scholar 

  • Ferenczy A, Bergeron C, Richart RM (1989) Human papillomavirus DNA in formites on objects used for the management of patients with genital human papillomavirus infections. Obstet Gynecol 74:950–954

    PubMed  CAS  Google Scholar 

  • Fife KH, Rogers RE, Zwickl BW (1987) Symptomatic and asymptomatic cervical infections with human papillomavirus during pregnancy. J Infect Dis 156:904–911

    Article  PubMed  CAS  Google Scholar 

  • Franquemont DW, Ward BE, Andersen WA, Crum CP (1989) Prediction of high-risk cervical papillomavirus infection by biopsy morphology. Am J Clin Pathol 92:577–582

    PubMed  CAS  Google Scholar 

  • Fujinaga Y, Shimada M, Okazawa F, Fukushima M, Kato I, Fijinaga K (1991) Simultaneous detection and typing genital human papillomavirus DNA using the polymerase chain reaction. J Gen Virol 72:1039–1044

    Article  PubMed  CAS  Google Scholar 

  • Giri I, Danos O (1986) Papillomavirus genomes. From sequence data to biological properties. Trends Genet 2:227–232

    CAS  Google Scholar 

  • Gravitt P, Hakenewerth A, Stoerker J (1991) A direct comparison of methods proposed for use in widespread screening of human papillomavirus infections. Mol Cell Probes 5:65–72

    Article  PubMed  CAS  Google Scholar 

  • Grégoire L, Arella M, Campione-Piccarco J, Lancaster WD (1989) Amplification of human papillomavirus DNA sequences by using conserved primers. J Clin Microbiol 27:2660–2665

    PubMed  Google Scholar 

  • He Y, Zhang J, Xu Q, Gao J (1989) Detection of human papillomavirus DNA in cervical cancer tissue by the polymerase chain reaction. J Virol Methods 26:17–26

    Article  PubMed  CAS  Google Scholar 

  • Hollingworth T, Barton S (1988) The natural history of early cervical neoplasia and cervical human papillomavirus infection. Cancer Surv 7:519–527

    PubMed  CAS  Google Scholar 

  • Howley PM (1983) The molecular biology of papillomavirus transformation. Am J Pathol 113:414–421

    PubMed  CAS  Google Scholar 

  • Ji HX, Syrjänen S, Klemi P, Chang F, Tosi P, Syrjänen K (1991) Prognostic significance of nuclear DNA content and human papillomavirus (HPV) type in invasive cervical cancer. Polymerase chain reaction (PCR) and flow cytometric analysis. Int J Gynecol Cancer 1:59–67

    Google Scholar 

  • Jiwa NM, van Gemert GW, Raap AK, Rijke FM, Mulder A, Lens PF, Salimans MMM, Zwaan FE, van Dorp W, van der Ploeg M (1989) Rapid detection of human cytomegalovirus DNA in peripheral blood leucocytes of viremic transplant recipients by the polymerase chain reaction. Transplantation 48:72–76

    Article  PubMed  CAS  Google Scholar 

  • Kallio P, Syrjänen S, Tervahauta A, Syrjänen K (1991) A simple isolation of DNA from formalin-fixed, paraffin-embedded samples for PCR. J Virol Methods 35:39–47

    Article  PubMed  CAS  Google Scholar 

  • Kataja V, Syrjänen K, Mäntyjärvi R, Väyrynen M, Syrjänen S, Saarikoski S, Parkkinen S, Yliskoski M, Salonen JT, Castren O (1989) Prospective follow-up of cervical HPV infections. Life table analysis of histopathological, cytological and colposcopic data. Eur J Epidemiol 5:1–8

    CAS  Google Scholar 

  • Kataja V, Syrjänen S, Yliskoski M, Parkkinen S, Saarikoski S, Mäntyjärvi R, Väyrynen M, Salonen JT, Castren O (1990) Prospective follow-up of genital HPV infections. Life-table analysis of HPV typing data. Eur J Epidemiol 6:9–14

    CAS  Google Scholar 

  • Kataja V, Syrjänen K, Syrjänen S, Mäntyjärvi R, Yliskoski M, Saarikoski S, Salonen JT (1992) Prognostic factors in cervical human papillomavirus (HPV) infections. Sex Transm Dis (in press)

    Google Scholar 

  • Kataoka A, Claesson U, Hansson BG, Eriksson M, Lindh E (1991) Human papillomavirus infection of the male diagnoses by Southern-blot hybridization and polymerase chain reaction: comparison between urethra samples and penile biopsy samples. J Med Virol 33:159–164

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki ES (1990) Sample preparation from blood, cells and other fluids. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 153–159

    Google Scholar 

  • King LA, Tase T, Twiggs LB, Okagaki T, Savage JE, Adcock LL, Prem KA, Carson LF (1989) Prognostic significance of the presence of human papillomavirus DNA in patients with invasive carcinoma of the cervix. Cancer 63:879–890

    Article  Google Scholar 

  • Kiyabu M, Shibata D, Arnheim N, Martin WJ, Fitzgibbons PL (1989) Detection of human papillomavirus in formalin-fixed, invasive squamous carcinomas using the polymerase chain reaction. Am J Surg Pathol 13:221–224

    Article  PubMed  CAS  Google Scholar 

  • Kulski JK, Pakoczy DP, Sterrett GF, Pixley EC (1989) Human papillomavirus coinfections of the vulva and uterine cervix. J Med Virol 27:244–251

    Article  PubMed  CAS  Google Scholar 

  • Li H, Gyllensten UB, Cui X, Saiki RK, Erlich HA, Arnheim N (1988) Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335:414–417

    Article  PubMed  CAS  Google Scholar 

  • Low SH, Thong TW, Ho TH, Lee YS, Morita T, Sing M, Yap EH, Chan YC (1990) Prevalence of human papillomavirus types 16 and 18 in cervical carcinomas: a study by dot-blot and Southern blot hybridization and the polymerase chain reaction. Jpn J Cancer 81:1118–1123

    Article  CAS  Google Scholar 

  • Lundeberg J, Wahlberg J, Uhlén M (1991) Rapid colorimetric quantification of PCR-amplified DNA. Biotechniques 10:68–75

    PubMed  CAS  Google Scholar 

  • Lörincz A, Spring S (1991) The detection of genital human papillomavirus infection using polymerase chain reaction. JAMA 265/21:2809

    Article  Google Scholar 

  • Macnab JCM, Walkinshaw SA, Cordiner JW, Clements JB (1986) Human papillomavirus in clinically and histologically normal tissue of patients with genital cancer. N Engl J Med 315:1052–1058

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Manos MM, Ting Y, Wright DK, Lewis AJ, Broker TR, Wolinsky SM (1989) Use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 7:209–214

    CAS  Google Scholar 

  • Manos M, Lee K, Greer C, Waldman J, Kiviat N, Hohnes K, Wheeler C (1990) Looking for human papillomavirus type 16 by PCR. Lancet 24:734

    Article  Google Scholar 

  • Mayelo V, Coursaget P, Fignon A, Lhuintre Y, Lansac J, Anthonioz P (1990) Détection du papillomavirus humain de type 16 dans les cellules épithéliales du col utérin. Presse méd 19:1978–1980

    PubMed  CAS  Google Scholar 

  • McNicol PJ, Dodd JG (1990) Detection of human papillomavirus DNA in prostate gland tissue by using the polymerase chain reaction amplification assay. J Clin Microbiol 28:409–412

    PubMed  CAS  Google Scholar 

  • Meanwell CA, Blackledge G, Cox MF, Maitland NJ (1987) HPV 16 DNA in normal and malignant cervical epithelium: implications for the aetiology and behaviour of cervical neoplasia. Lancet i: 703–707

    Article  Google Scholar 

  • Melchers W, van den Brule A, Walboomers J, de Bruin M, Burger M, Herbrink P, Meijer C, Lindeman J, Quint W (1989) Increased detection rate of human papillomavirus in cervical scrapes by the polymerase chain reaction as compared to modified FISH and Southernblot analysis. J Med Virol 27:329–335

    Article  PubMed  CAS  Google Scholar 

  • Miller JF, Dower WJ, Tompkins H (1988) High-voltage electroporation of bacteria: Genetic transformation of Campylobacter jejuni with plasmid DNA. Proc Natl Acad Sci 85:856–871

    Article  PubMed  CAS  Google Scholar 

  • Morris BJ, Flanagan JL, McKinnon KJ, Nightingale BN (1988) Papillomavirus screening of cervical lavages by polymerase chain reaction. Lancet 10:1368

    Article  Google Scholar 

  • Mullink H, Walboomers JMM, Tadema TM, Jansen DJ, Meijer CJLM (1989) Combined immuno-und nonradioactive hybridocytochemistry on cells and tissue sections: influence of fixation, enzyme pretreatment, and choice of chromogen on detection of antigen and DNA sequences. J Histochem Cytochem 37:603–609

    Article  PubMed  CAS  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  PubMed  CAS  Google Scholar 

  • Nash JD, Burke TW, Hoskins WJ (1987) Biologic course of cervical human papillomavirus infection. Obstet Gynecol 69:160–162

    PubMed  CAS  Google Scholar 

  • Nishikawa A, Fukushima M, Shimada M, Yamakawa Y, Shimano S, Kato I, Fujinaga K (1991) Relatively low prevalence of human papillomavirus 16, 18 and 33 DNA in the normal cervices of Japanese women shown by polymerase chain reaction. Jpn J Cancer 82:532–538

    Article  CAS  Google Scholar 

  • Nuovo GJ (1990) Human papillomavirus DNA in genital tract lesions histologically negative for condylomata. Am J Surg Pathol 14:643–651

    Article  PubMed  CAS  Google Scholar 

  • Oriel JD (1987) Genital and anal papillomavirus infections in human males. In: Syrjänen KJ, Gissmann L, Koss L (eds) Papillomaviruses and human disease. Springer, Berlin Heidelberg New York, pp 182–196

    Chapter  Google Scholar 

  • Panaccio M, Lew A (1991) PCR based diagnosis in the presence of 8% (v/v) blood. Nucleic Acid Res 19:1151

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Jones RW, McLean MR, Currie JL, Woodruff JD, Shah KV, Kurman RJ (1991) Possible etiologic heterogeneity of vulvar intraepithelial neoplasia. Cancer 67:1599–1607

    Article  PubMed  CAS  Google Scholar 

  • Roman A, Fife KH (1989) Human papillomaviruses: are we ready to type. Clin Microbiol Rev 2:166–190

    PubMed  CAS  Google Scholar 

  • Saiki RK (1990) Amplification of genomic DNA. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 153–159

    Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globulin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Schiffman MH, Bauer HM, Lorincz AT, Manos MM, Byrne JC, Glass AG, Cadell DM, Howley PM (1991) Comparison of Southern blot hybridization and polymerase chain reaction methods for the detection of human papillomavirus DNA. J Clin Microbiol 29:573–577

    PubMed  CAS  Google Scholar 

  • Schneider A (1990) Latent and subclinical genital HPV infections. Papillomavirus Rep 1:2–5

    Google Scholar 

  • Schwarz E, Schneider-Gedicke A, zur Hausen H (1987) Human papillomavirus type-18 transcription in cervical carcinoma cell lines and in human cell hybrids. In: Steinberg BM, Brandsma JL, Taichman LA (eds) Cancer cells: 5. Papillomaviruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 47–53

    Google Scholar 

  • Sedlacek TV, Lindheim S, Eder C, Hasty L, Woodland M, Ludomirsky A, Rando RF (1989) Mechanism for human papillomavirus transmission at birth. Am J Obstet Gynecol 161:55–59

    PubMed  CAS  Google Scholar 

  • Shibata D, Arnheim KN, Martin WJ (1988) Detection of human papillomavirus in paraffin-embedded tissue using the polymerase chain reaction. J Exp Med 167:225–230

    Article  PubMed  CAS  Google Scholar 

  • Snijders PJF, van den Brule AJC, Schrijnemakers HFJ, Snow G, Meijer CJLM, Walboomers JMM (1990) The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. J Gen Virol 71:173–181

    Article  PubMed  CAS  Google Scholar 

  • Syrjänen KJ (1986) Human papillomavirus (HPV) infections of the female genital tract and their associations with intraepithelial neoplasia and squamous cell carcinoma. Pathol Annu 21:53–89

    PubMed  Google Scholar 

  • Syrjänen KJ (1989) Epidemiology of human papillomavirus (HPV) infections and their associations with genital squamous cell cancer. APMIS 97:957–970

    Article  PubMed  Google Scholar 

  • Syrjänen KJ (1990) Natural history of genital HPV infections. Papillomavirus Rep 1(4): 1–5

    Google Scholar 

  • Syrjänen KJ (1992) Genital human papillomavirus (HPV) infections and their associations with squamous cell cancer: reappraisal of the morphologic, epidemiologic and DNA data. Prog Surg Pathol XII:217–240

    Google Scholar 

  • Syrjänen KJ, Syrjänen SM (1989) Concept on the existence of human papillomavirus (HPV) DNA in histologically normal squamous epithelium of the genital tract should be re-evaluated. Acta Obstet Gynecol Scand 68:613–617

    Article  PubMed  Google Scholar 

  • Syrjänen KJ, de Villiers E-M, Väyrynen M, Mäntyjvärvi R, Parkkinen S, Saarikoski S, Castren O (1985 a) Cervical papillomavirus infection progressing to invasive cancer in less than three years. Lancet i:510–511

    Article  Google Scholar 

  • Syrjänen KJ, Väyrynen M, Saarikoski S, Mäntyjärvi R, Parkkinen S, Hippeläinen M, Castren O (1985 b) Natural history of cervical human papillomavirus (HPV) infections based on prospective follow-up. Br J Obstet Gynaecol 92:1086–1092

    Article  PubMed  Google Scholar 

  • Syrjänen KJ, Gissmann L, Koss LG (eds) (1987) Papillomaviruses and human disease. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Syrjänen KJ, Mäntyjärvi R, Saarikoski S, Väyrynen M, Syrjänen S, Parkkinen S, Yliskoski M, Saastomoinen J, Castren O (1988) Factors associated with progression of cervical human papillomavirus (HPV) infections into carcinoma in situ during a long-term prospective follow-up. Br J Obstet Gynaecol 95:1096–1102

    Article  PubMed  Google Scholar 

  • Syrjänen KJ, Hakama M, Saarikoski S, Väyrynen M, Yliskoski M, Syrjänen S, Kataja V, Castren O (1990 a) Prevalence, incidence and estimated life-time risk of cervical human papillomavirus (HPV) infections in nonselected Finnish female population. Sex Transm Dis 17:15–19

    PubMed  Google Scholar 

  • Syrjänen KJ, Yliskoski M, Kataja V, Hippeläinen M, Syrjänen S, Saarikoski S, Ryhänen A (1990 b) Prevalence of genital human papillomavirus (HPV) infections in a mass-screened Finnish female population aged 20-65 years. Int J STD AIDS 1:410–415

    PubMed  Google Scholar 

  • Syrjänen SM (1987) Human papillomavirus infections in the oral cavity. In: Syrjänen KJ, Gissmann L, Koss L (eds) Papillomaviruses and human disease. Springer, Berlin Heidelberg New York, pp 104–137

    Chapter  Google Scholar 

  • Syrjänen SM (1990) Basic concepts and practical applications of recombinant DNA techniques in detection of human papillomavirus (HPV) infections. APMIS 98:95–110

    Article  PubMed  Google Scholar 

  • Syrjänen SM, Saastamoinen J, Chang F, Ji H, Syrjänen K (1990) Colposcopy, punch biopsy, in situ DNA hybridization, and the polymerase chain reaction in searching for genital human papillomavirus (HPV) infections in women with normal PAP smears. J Med Virol 31:259–266

    Article  PubMed  Google Scholar 

  • Syrjänen S, Andersson B, Juntunen L, Syrjänen K (1991) Use of polymerase chain reaction in generation of biotinylated human papillomavirus DNA probes for in situ hybridization. J Virol Meth 31:147–160

    Article  Google Scholar 

  • Tham KM, Chow VTK, Singh P, Tock EPC, Ching KC, Lim-Tan SK, Sng ITY, Bernard HU (1991) Diagnostic sensitivity of polymerase chain reaction and Southern blot hybridization for the detection of human papillomavirus DNA in biopsy specimens from cervical lesions. Am J Clin Pathol 95:638–646

    PubMed  CAS  Google Scholar 

  • Tidy J, Farrell PJ (1989) Retraction: human papillomavirus subtype 16b. Lancet ii: 1535

    Article  Google Scholar 

  • Tidy JA, Vousden KH, Farrell PJ (1989) Relation between infection with a subtype of HPV 16 and cervical neoplasia. Lancet ii: 1125–1217

    Google Scholar 

  • van den Brule AJC, Claas ECJ, du Maine M, Melchers WJG, Heimerhorst T, Quint WGV, Lindeman J, Meijer CJLM, Walboomers JMM (1989) Use of anticontamination primers in the polymerase chain reaction for the detection of human papilloma virus genotypes in cervical scrapes and biopsies. J Med Virol 29:20–27

    Google Scholar 

  • van den Brule AJC, Meijer CJLM, Bakels V, Kenemans P, Walboomers JMM (1990) Rapid detection of human papillomavirus in cervical scrapes by combined general primer-mediated and type-specific polymerase chain reaction. J Clin Microbiol 28:2739–2743

    Google Scholar 

  • Walker J, Bloss JD, Liao SY, Berman M, Bergen S, Wilczynski SP (1989) Human papillomavirus genotype as a prognostic indicator in carcinoma of the uterine cervix. Obstet Gynecol 74:781–785

    PubMed  CAS  Google Scholar 

  • Wang AM, Doyle MV, Mark DF (1989) Quantitation of mRNA by the polymerase chain reaction. Biochemistry 86:9717–9721

    CAS  Google Scholar 

  • Ward P, Parry GN, Yule Y (1989) Human papillomavirus subtype 16 a. Lancet ii: 170

    Article  Google Scholar 

  • Wickenden C, Malcolm ADB, Steele A, Coleman DV (1985) Screening for wart virus infection in normal and abnormal cervices by DNA hybridization of cervical scrapes. Lancet i:65–67

    Article  Google Scholar 

  • Wright DK, Manos MM (1990) Sample preparation from paraffin-embedded tissues. In: Innis MA, Gelfand DH, Sninsky, JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 153–159

    Google Scholar 

  • Yoshikawa H, Kawana T, Kitagawa K, Mizuno M, Yoshikura H, Iwamoto A (1991) Detection and typing of multiple genital human papillomaviruses by DNA amplification with consensus primers. Jpn J Cancer Res 82:524–531

    Article  PubMed  CAS  Google Scholar 

  • zur Hausen H (1989) Papillomavirus in anogenital cancer: the dilemma of epidemiologic approaches. INCI 81:1681–1682

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Syrjänen, S., Syrjänen, K. (1992). Human Papillomavirus Infections of the Genital Tract: Clinical Significance and Diagnosis by Polymerase Chain Reaction. In: Becker, Y., Darai, G. (eds) Diagnosis of Human Viruses by Polymerase Chain Reaction Technology. Frontiers of Virology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84766-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84766-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84768-4

  • Online ISBN: 978-3-642-84766-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics