Skip to main content

Part of the book series: NATO ASI Series ((NATO ASI F,volume 43))

  • 251 Accesses

Abstract

This paper reviews the development of solid state sensors and actuators during the last decade. Both solid state physical and chemical sensors suitable for use in the measurement and control of manufacturing processes will be discussed. The principle, the device structure and the performance of physical transducers for temperature, pressure, displacement, acceleration, flow, display, fluid injection and controlled fluid flow valves is summarized. Chemical sensors for humidity, combustive gases, ionic concentration in electrolytes and large molecule concentration are also outlined for their potential applications in automated manufacturing.

The technology of micromachining, one of the bases for solid state transducers, is discussed with examples given to illustrate its capabilities and remaining problems.

The possibility of integrating signal processing circuits on or near the transducer chip to fabricate “intelligent sensors” is presented along with the functions that can be incorporated on the transducers.

Future trends in solid state transducer research and the possibility of beneficial collaboration between users and designers, as well as between material scientists, technologists, device designers and packaging engineers, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference list

Journals, Special Issues and Proceedings

  1. Sensors and Actuators, (ed. S. Middelhoek) 1981–85.

    Google Scholar 

  2. IEEE Trans. Electron Devices, Special Issues ED-26, 12; (Dec. 1979) and ED-29, 1; (Jan. 1982) (ed. K. Wise).

    Google Scholar 

  3. A series of proceedings of the Workshop on Biomedical Sensors organized at Case Institute of Technology, Case Western Reserve University, Cleveland, Ohio, USA, published by CRC Press, including Indwelling and Implantable Pressure Transducers (eds. D. Fleming, W. Ko and M. Neuman), 1972, and The Theory, Design and Biomedical Applications of Solid State Chemical Sensors (eds. P. Cheung, et al.) 1982.

    Google Scholar 

  4. Proceedings of the 1st and 2nd Sensor Symposium, IEE Society, Japan, (ed. S. Kataoka) 1981 and 1982.

    Google Scholar 

  5. Proceedings of the International Meeting on Chemical Sensors, Kodansha, Japan, (ed. T. Seiyama) 1983.

    Google Scholar 

  6. Abstracts of the 2nd Int. Conf. Sol. St. Sensors and Actuators, Delft, The Netherlands, May 31–June 3, 1983. Full papers published in Sensors and Actuators, Vol. 4. 1983/84.

    Google Scholar 

  7. Digest of 1985 International Solid State Sensors and Acutators Conference, June 11–15, 1985, Philadelphia, Pennsylvania, U.S.A. Published by the International Coordinational Committe on Sensors and Actuators, Electronics Design Center, CWRU, Cleveland, Ohio 44106

    Google Scholar 

Sampled Articles

  1. Ko, W. and Hynecek, J. Dry electrodes and electrode amplifiers. Chapter in Biomedical Electrode Technology (eds. H. Miller and D. Harrison), New York, Academic Press, 1974, p. 169.

    Google Scholar 

  2. Wise, K., Angell, J. and Starr, A. An integrated-circuit approach to extracellular microelectrodes. IEEE Trans. Biomed. Eng., BME-17:238, 1970.

    Article  Google Scholar 

  3. Meijer, G. An IC temperature transducer with an intrinsic reference. IEEE Trans. Sol. St. Cir., SG-15:370, 1980.

    Article  Google Scholar 

  4. Schaffer, H. and Koeder, O. A sensitive all silicon temperature transducer. Sensors and Actuators 4:661, 1983.

    Article  Google Scholar 

  5. Lahiji, G. and Wise, K. A batch-fabricated silicon thermopile infrared detector. IEEE Trans. Electron Devices, ED-29(1):14, 1982.

    Article  Google Scholar 

  6. Royer, M. etal. ZnO on Si integrated acoustic sensor. Sensors and Actuators 4:357, 1983.

    Article  Google Scholar 

  7. Swartz, R. and Pluimer, J. Integrated silicon-PVF2 acoustic transducer arrays. IEEE Trans. Electron Devices, ED-26(12):1921, 1979.

    Google Scholar 

  8. Yeh, Y., Muller, R. and Kwan, S. Detection of acoustic waves with a PI DMOS transducer. Japan J. App. Phys., 16-1 suppl.:517, 1977.

    Google Scholar 

  9. Zieren, V. and Duyndam, D. Magnetic-field-sensitive multicol lector n-p-n transistors. IEEE Trans. Electron Devices, ED-29(1):83, 1982.

    Article  Google Scholar 

  10. Popovic, R. and Baiter, H. Dual-collector magnetotransistor optimized with respect to injection modulation. Sensors and Actuators 4:155, 1983.

    Article  Google Scholar 

  11. Huijsing, J., Schuddemat, J. and Verhoef, W. Monolithic integrated direction-sensitive flow sensor. IEEE Trans. Electron Devices, ED-29(1) :133, 1982.

    Article  Google Scholar 

  12. Van Putten, A. An integrated silicon double bridge anemometer. Sensors and Actuators 4:387, 1983.

    Article  Google Scholar 

  13. Rahnamai, H. and Zemel, J. Pyroelectric anemometer: Preparation and flow velocity measurements. Sensors and Actuators 2:3, 1981.

    Google Scholar 

  14. Noorlag, D. and Middelhoek, S. Two dimensional position sensitive photodetector with high linearity made with standard IC technology. IEEE J. Sol. St. Elec. Dev., 3:75, 1979.

    Google Scholar 

  15. Petersson, G. and Lindholm, L. Position sensitive light detectors with high linearity. IEEE J. Sol. St. Circ., SC-13:392, 1978.

    Article  Google Scholar 

  16. Lubke, K., Rieder, G. and Thim, H. A high-speed high-resolution two-dimensional position-sensitive GaAs Schottky photodetector. Sensors and Actuators 4:317, 1983.

    Article  Google Scholar 

  17. Ko, W., Bao, M. and Hong, Y. A high-sensitivity integratedcircuit capacitive pressure transducer. IEEE Trans. Electron Devices, ED-29 (1):48, 1982.

    Google Scholar 

  18. Ko, W. et al. Capacitive pressure transducers with integrated circuits. Sensors and Actuators 4:403, 1983.

    Article  Google Scholar 

  19. Borky, J. and Wise, K. Integrated signal conditioning for sili-con pressure sensors. IEEE Trans. Electron Devices, ED-26 (12):1906, 1979.

    Article  Google Scholar 

  20. Sugiyama, S., Takigawa, M. and Igarashi, I. Integrated piezoresistive pressure sensor with both voltage and frequency output. Sensors and Actuators 4:113, 1983.

    Article  Google Scholar 

  21. Yamada, K., Nishihara, M. and Kanzawa, R. A piezoresistive integrated pressure sensor. Sensors and Actuators 4:63, 1983.

    Article  Google Scholar 

  22. Smits, J. et al. Resonant diaphragm pressure measurement system with ZnO on Si excitation. Sensors and Actuators 4:565, 1983.

    Article  Google Scholar 

  23. Roylance, L. and Angell, J. A batch-fabricated silicon accelerometer. IEEE Trans. Electron Devices ED-26(12):1911, 1979.

    Article  Google Scholar 

  24. Petersen, K., Shartel, A. and Raley, N. Micromechanical accelerometer integrated with MOS detection cicuitry. IEEE Trans. Electron Devices ED-29(1):23, 1982.

    Article  Google Scholar 

  25. Chen, P. et al. Integrated silicon microbeam PI-FET accelerometer. IEEE Trans. Electron Devices ED-29(1):27, 1982.

    Article  Google Scholar 

  26. Hok, B., Ovren, C. and Gustafsson, E. Batch fabrication of micromechanical elements in GaAs-A1 xGA1_xAs. Sensors and Actuators 4:341, 1983.

    Article  Google Scholar 

  27. Sansen, W., Vandeloo, P. and Puers, B. A force transducer based on stress effects in bipolar transistors, Sensors and Actuators 3:343, 1982.

    Article  Google Scholar 

  28. Petersen, K.E. Silicon as a mechanical material. Proc. IEEE 70:420, May, 1979.

    Google Scholar 

  29. Cadman, M. et al. New micromechanical display using thin metallic films. IEEE Elect. Lett. EDL-4:3, 1983.

    Article  Google Scholar 

  30. Bel, N. Integrated capacitive imaging display for the blind. Proc. 4th European Conf. Electronics, Germany, (eds. W. Kaiser and W. Proebster) Netherlands, North Holland Pub. Co., 1980, p. 549.

    Google Scholar 

  31. Senturia, S., Garverick, S. and Togashi, K. Monolithic integrated circuit implementations of the charge flow transistor oscillator moisture sensor. Sensors and Actuators 2:59–72, 1981.

    Article  Google Scholar 

  32. Regtien, P. Solid state humidity sensors. Sensors and Actuators 2:85–95, 1981.

    Article  Google Scholar 

  33. Lundstrom, K., Shivaman, M. and Svensson, C. A hydrogen sensitive Pd-gate MOS transistor. J. App. Phys. 46:3876, 1975.

    Article  Google Scholar 

  34. Poteat, T. and Lalevic, B. Transition metal-gate MOS gaseous detectors, IEEE Trans. Electron Devices ED-29:123, 1982.

    Article  Google Scholar 

  35. Terry, S., Jerman, J. and Angell, J. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices ED-26:1880, 1979.

    Article  Google Scholar 

  36. Fouletier, J. Gas analysis with potentiometric sensors. A review. Sensors and Actuators 3:295, 1982.

    Article  Google Scholar 

  37. Croset, M., Schnell, P., Velasco, G. and Sielka, J. Study of calcia - stabilized zirconia thin film sensors, J. Vac. Sci. Technol. 14:777, 1977.

    Article  Google Scholar 

  38. Wen, C., Chen, T. and Zemel, J. Gate controlled diodes for ionic concentration measurement. IEEE Trans. Electron Devices ED-26:1945, 1979.

    Article  Google Scholar 

  39. Bergveld, P. Development, operation and application of the ion sensitive f i e l d effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. BME-19:342, 1972.

    Article  Google Scholar 

  40. Cheung, P., Ko, W., Fung, C. and Wong, A. Theory, fabrication, testing and clinical response of ion selective fiel d effect transistor devices, in Theory, Design and Biomedical Applications of Solid State Chemical Sensors (eds. P Cheung et al.) Boca Raton, Florida, CRC Press, 1978, pp 91–118.

    Google Scholar 

  41. Siu, W. and Cobbold, R. Basic properties of the electrolyte-SiO2-Si system: physical and theoretical aspects. IEEE Trans. Electron Devices ED-26:1805–1815, 1979.

    Article  Google Scholar 

  42. Matsuo, T. and Wise, K. An integrated field effect electrode for biopotential recording. IEEE Trans. Biomed. Eng. BME-21:485, 1974.

    Article  Google Scholar 

  43. Janata, J. and Huber, R. Chemically selective field effect transistors in ion-selective electrode, in Analytical Chemistry (ed. H Freiser) New York, Plenum Press, 1980, Vol. 2 pp. 31-79.

    Google Scholar 

  44. Lubbers, D. and Opitz, N. New fluorescence photometrical techniques for simultaneous and continuous measurements of ionic strength and hydrogen ion activities. Sensors and Actuators 4:473, 1983.

    Article  Google Scholar 

  45. Peterson, J., Fitzgerald, R. and Buckhold, D. Fiber optic probe for in vivo measurement of PO2 Analyt. Chem. 56:62, 1984.

    Google Scholar 

  46. Ko, W., Bergmann, B. and Plonsey, R. Data acquisition system for body surface potential mapping. J. of Bioengineering 2:38–46, 1977.

    Google Scholar 

  47. Prohaska, O. et. al. A 16-fold semi-micro elect rode for intracortical recording of field potentials, Electro-enceph. Clinical Neurophysiology 47:629, 1979.

    Article  Google Scholar 

  48. Barth, P. and Angell, J. Thin linear thermometer arrays for use in localized cancer hyperthermia. IEEE Trans. Electron Devices ED-29:144, 1982.

    Article  Google Scholar 

  49. Green, L. and Ko, W. Optical displacement measurement device. EDC Design Memo 297-A, Case Western Reserve University, 1980.

    Google Scholar 

  50. Ko, W., Wang, S. and Marsolais, E. Altitude sensor for angle measurement in neural prosthesis. Proc. 37th ACEMB, Los Angeles, Sept. 1984, p. 106.

    Google Scholar 

  51. Leung, A., Ko, W., Spear, T. and Bettice, J. Intracranial pressure telemetry system using semicustom integrated circuits. Part I. Overall Development, submitted to IEEI Trans. BME. 1985.

    Google Scholar 

  52. Ko, W., Hynecek, J. and Boettcher, S. Development of a miniature pressure transducer for biomedical applications. IEEE Trans. Electron Devices ED-26:1986, 1979.

    Google Scholar 

  53. Ko, W. and Fung, C. VLSI and intelligent transducers. Sensors and Actuators 2:239, 1982.

    Article  Google Scholar 

  54. Cobbold, R. Transducers for Biomedical Measuarements, New York, John Wiley, 1974.

    Google Scholar 

  55. Spencer, W. A review of programmed insulin delivery systems. IEEE Trans. BME. MBE-28:3, 1981.

    Article  Google Scholar 

  56. Micromachining and Micropackaging of Transducers, Eds. Fung, C.D., Cheung, P.W., Ko, W.H. and Fleming, D.G., Elsevier Scientif ic Publishing Co., Amsterdam, 1985.

    Google Scholar 

  57. Theunissen, M. et. al. Application of preferential electrochemical etching of silicon to semiconductor device Technology. J. Electrochem. Society, Vol. 117(7):959, 1970.

    Article  Google Scholar 

  58. Bassous, E. Fabrication of Nevel 3-D microstructure by anisotropic etching of (100) and (110) Silicon. IEEE Trans. Electron Devices ED-25:1178, 1978.

    Article  Google Scholar 

  59. Coburn, J. Plasma assisted etching. Plasma Chemistry and Plasma Processing, 2(1):1 1981.

    Article  Google Scholar 

  60. Flamm, D. and Donnelly, V. The design of plasma etchants. Plasma Chemistry and Plasma Processing, 1(4):317 1981.

    Article  Google Scholar 

  61. Eugelkrout, D. et. al. Current research in adhesiveless bonding of cover glass to solar cells. 16th IEEE Photovoltaic Spec. Conf. 1982, p. 108.

    Google Scholar 

  62. Brooks, A. and Donovan, R. Low temeprature electrostatic silicon to silicon seals using sputtered borosilicate glass. J. Electrochem. Soc. 119:545, 1972.

    Article  Google Scholar 

  63. Ko, W., Suminto, J. and Yeh, G. Bonding techniques for microsensors. In Micromachining and Micropackaging of Transducers, Elsevier Scientific Publishing Co., Amsterdam, 1985.

    Google Scholar 

  64. Herring, R. Advances in reduced pressure silicon epitaxy. Solid State Technol. 22:75, 1979.

    Google Scholar 

  65. Kern, W. and Bau, V. Chemical vapor deposition of inorganic thin films in Thin Film Processes, J. Vossen and W. Kern, Eds., New York, Academic Press, 1978.

    Google Scholar 

  66. Bean, J. Silicon molecular beam epitaxy as a VLSI processing technique. 1981 Technical Digest, IEEE-IEDM Proc. 1981, p. 6.

    Google Scholar 

  67. Guckel, H, and Burns, D, Planar processed polysilicon sealed cavities for pressure transducer arrays, 1984 Technical Digest, IEEE-IEDM 1984, p. 223.

    Google Scholar 

  68. Anthony, T, and Cline, H. Migration of fine molten wires in thin siliconwafer. J. Appl. Phys. 49:2777, 1978,

    Article  Google Scholar 

  69. Huang, J. and Wise, K, A monolithic pressure-pH sensor for esophageal studies. 1982 Technical Digest, IEEE-IEDM, 1982, p. 316,

    Google Scholar 

  70. Tung, C, Plasma etching of silicon with D.C, bias, M.S. thesis, Case Western Reserve University, Cleveland, Ohio, May 1984,

    Google Scholar 

  71. Ehrlich, D. et. al. Fabrication of through-wafer via conductors in Si by laser photochemical processing. IEEE Trans, on Comp. Hyb. and Manuf. Technol, CHMT-5(4):520, 1982.

    Article  Google Scholar 

  72. Van Osenbrugge, C, High preceission spark machining, Philip Tech. Rev. 30:195, 1969.

    Google Scholar 

  73. Bollinger, D. and Fink, R. A new production technique: ion milling. Solid State Technol. 25:79, 1980.

    Google Scholar 

  74. Kuiken, H. and Trjburg, R. Centrifugal etching: a promising new tool to achieve deep etching results. J, Electrochem. Soc. 130(8): 1722, 1983.

    Article  Google Scholar 

  75. Regtien, P. “Development and application of Humidity sensors”, chapter of this book,

    Google Scholar 

  76. Bergveld, P. “Development of and application of chemical sensors in liquids”, chapter of this book.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ko, W.H. (1988). Solid State Transducers. In: Dario, P. (eds) Sensors and Sensory Systems for Advanced Robots. NATO ASI Series, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83410-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83410-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83412-7

  • Online ISBN: 978-3-642-83410-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics