Skip to main content

The Biological Basis for Tumour Therapy by Hyperthermia and Radiation

  • Chapter
Hyperthermia and the Therapy of Malignant Tumors

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 104))

Abstract

The use of hyperthermia in treatment of cancers has a long tradition. One of the oldest medical texts describes the treatment of a breast tumour with hyperthermia. The description is found in the Edwin Smith Surgical Papyrus; an Egyptian papyrus roll which can be dated back to about 3000 B. C. (Breasted 1930; Overgaard 1985). Treatment with hyperthermia is also mentioned in medical reports of greek physicians. Parmenides believed that he could cure all illnesses including tumours if he had the ability to induce fever. Hippocrates described the favourable role of fever: “Quae medicamenta non sanant, ferum sanat. Quae ferum non sanat, ignis sanat. Quae vero ignis non sanat, insanobilia repotari oportet”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adam G, Neumann H, Hinkelbein W, Weth R, Engelhardt R (1983) Metabolic changes in hyperthermia with chemotherapy. In: Engelhardt R (ed) Proceedings of the 13th international congress of chemotherapy, Vienna, Session 12.10, part 273, pp 37–40

    Google Scholar 

  • Alper T (1979) Cellular radiobiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Altman D, Gerber GB, Ikada S (1970) Radiation biochemistry. Academic, New York

    Google Scholar 

  • Anderson RL, Minton KW, Li GC, Hahn GM (1981) Temperature induced homeoviscous adaptation of Chinese hamster ovary cells. Biochem Biophys Acta 641: 334–348

    PubMed  CAS  Google Scholar 

  • Anghilari LJ, Crone-Escanye MC, Marchal C, Robert J (1984) Plasma membrane changes during hyperthermia: probable role of ionic modification in tumor cell death. In: Overgaard J (ed) Hyperthermic oncology, vol 1. Taylor and Francis, London, pp 49–52

    Google Scholar 

  • Ashburner M, Bonner JJ (1979) The induction of gene activity in Drosophila by heat shock. Cell 17: 241–254

    PubMed  CAS  Google Scholar 

  • Atkinson ER (1977) Hyperthermia dose definition. J Bioengin 1: 487–492

    Google Scholar 

  • Bass H, Moore JL, Coakely WT (1978) Lethality in mammalian cells due to hyperthermia under oxic and hypoxic conditions. Int J Radiat Bio 133: 57–67

    Google Scholar 

  • Belt JA, Thomas JA, Buchsbaum RN, Racker E (1979) Inhibition of lactate transport and glycolysis in Ehrlich ascites tumor cells by bioflavonoids. Biochemistry 18: 3506–3511

    PubMed  CAS  Google Scholar 

  • Ben-Hur E, Riklis E (1979) Enhancement of thermal killing by polyamines. IV. Effects of heat sensitivity and spermine on protein synthesis and ornithine decarboxylase. Cancer Biochem Biphys 4: 25–31

    Google Scholar 

  • Ben-Hur E, Bronk VB, Elkind MM (1972) Thermally enhanced radiosensitivity of cultured Chinese hamster cells. Nature (New Biol) 238: 209–211

    CAS  Google Scholar 

  • Ben-Hur E, Elkind MM, Bronk BV (1974) Thermally enhanced radioresponse of cultured Chinese hamster cells: inhibition of rapair of sublethal damage and enhancement of lethal damage. Radiat Res 58: 38–51

    PubMed  CAS  Google Scholar 

  • Bhuyan BK, Day KJ, Edgerton CE, Ogunbase O (1977) Sensitivity of different cell lines and of different phases in the cell cycle to hyperthermia. Cancer Res 37: 3780–3784

    PubMed  CAS  Google Scholar 

  • Bowler K, Duncan CJ, Gladwell RT, Davison TF (1973) Cellular heat injury. Comp Biochem Physiol (A) 45: 441–450

    CAS  Google Scholar 

  • Breasted JH (1930) The Edwin Smith surgical papyrus. In: Licht S (ed) Therapeutic heat and cold, 2nd edn, Waverly, Baltimore, p 196

    Google Scholar 

  • Breipohl W, van Beuningen D, Ummels M, Streffer C, Schönfelder B (1983) Effect of hyperthermia on the intestinal mucosa of mice. Verh Anat Ges 77: 567–569

    Google Scholar 

  • Burdon RH (1985) Heat shock proteins. In: Overgaard J (ed) Hyperthermie oncology, vol II. Taylor and Francis, London, pp 223–230

    Google Scholar 

  • Burdon RH, Slater A, McMahon M, Cato ACB (1982) Hyperthermia and heat shock proteins of He-La cells. Br J Cancer 45: 953–963

    PubMed  CAS  Google Scholar 

  • Burdon RH, Kerr SM, Cutmore CMM, Munro J, Gill V (1984) Hyperthermia, Na+K+ATPase and lactic acid production in some human tumour cells. Br J Cancer 49: 437–445

    Google Scholar 

  • Burger F, Engelbrecht FW (1967) Changes in blood composition in experimental heat stroke. S African Med J 41: 718–721

    CAS  Google Scholar 

  • Busch W (1866) Über den Einfluß welche heftigere Erysipeln zuweilig auf organisierte Neubildungen ausüben. Vrh Naturhist Preuss Rhein Westphal 23: 28–30

    Google Scholar 

  • Calderwood StK, Hahn GM (1983) Thermal sensitivity and resistance of insulin-receptor binding. Biochim Biophys Acta 756: 1–8

    PubMed  CAS  Google Scholar 

  • Cavaliere R, Ciocatto EC, Giovanella BC, Heidelberger C, Johnson RO, Moricca G, Rossi-Fanelli A (1967) Selective heat sensitivity of cancer cells (biochemical and clinical studies). Cancer 20: 1351–1381

    PubMed  CAS  Google Scholar 

  • Chen TT, Heidelberger C (1969) Quantitative studies on the malignant transformation of mouse prostate cells by carcinogenic hydrocarbons in vitro. Int J Cancer 4: 166–178

    PubMed  CAS  Google Scholar 

  • Clark EP, Lett JT (1978) Possible mechanisms for hyperthermic inactivation of the rejoining of X-ray induced DNA strand breaks. In: 2–4 June 1977. Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation, Proceedings of the Second International Symposium, Essen, Germany. Urban and Schwarzenberg, Baltimore, pp 144–145

    Google Scholar 

  • Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas, with a report of ten original cases. Am J Med Sci 105: 488–511

    Google Scholar 

  • Collins FG, Mitros FA, Skibba JL (1980) Effect of palmitate on hepatic biosynthetic functions at hyperthermic temperatures. Metabolism 29: 524–531

    PubMed  CAS  Google Scholar 

  • Connor WG, Gerner EW, Miller RC, Boone MLM (1977) Prospects for hypethermia in human cancer therapy: part II. Radiology 123: 497–503

    PubMed  CAS  Google Scholar 

  • Cony PM, Robinson S, Getz S (1977) Hyperthermic effects on DNA repair mechanisms. Radiology 123: 475–482

    Google Scholar 

  • Coss RA, Dewey WC, Bamburg JR (1982) Effects of hyperthermia on dividing Chinese hamster ovary cells and on microtubules in vitro. Cancer Res 42: 1059–1071

    PubMed  CAS  Google Scholar 

  • Cress AE, Culver PS, Moon ThE, Gerner EW (1982) Correlation between amounts of cellular membrane components and sensitivity to hyperthermia in a variety of mammalian cell lines in cultures. Cancer Res 42: 1716–1721

    PubMed  CAS  Google Scholar 

  • Dennis WH, Yatvin MB (1981) Correlation of hyperthermic sensitivity and membrane microviscosity in E. coli K1060. Int J of Radiat Biol 39: 265–271

    CAS  Google Scholar 

  • Dethlefsen LA, Dewey WC (eds) (1982) Third international symposium: cancer therapy by hyperthermia, drugs, and radiation. Natl Cancer Inst Monogr 61

    Google Scholar 

  • Dewey WC (1984) Interaction of heat with radiation and chemotherapy. Cancer Res [Suppl] 44: 4714s - 4720s

    CAS  Google Scholar 

  • Dewey WC, Esch JL (1982) Transient thermal tolerance: cell killing and polymerase activities. Radi-at Res 92: 611–614

    CAS  Google Scholar 

  • Dewey WC, Holohan EV (1984) Hyperthermia–basic biology. In: Rosenblum ML, Wilson CB (eds) Progress in experimental tumor research: brain tumor therapy, vol 28, Karger, Basel, pp 198–219

    Google Scholar 

  • Dewey WC, Westra A, Miller HH (1971) Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. Int J Radiat Biol 20: 505–520.

    CAS  Google Scholar 

  • Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123: 464–477

    Google Scholar 

  • Dewey WC, Sapareto SA, Betten DA (1978) Hyperthermic radiosensitization of synchronous Chinese hamster cells: relationship between lethality and chromosomal aberrations. Radiat Res 76: 48–59

    PubMed  CAS  Google Scholar 

  • Dewey WC, Freeman ML, Raaphorst GP, Clark EP, Wong RS, Highfield DP, Spiro JS, Tomasovic SP, Denman DL, Coss RA (1980) Cell biology of hyperthermia and radiation. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven, New York, pp 589–623

    Google Scholar 

  • Dickson J, Calderwood StK (1979) Effect of hyperglycemia and hyperthermia on the pH, glycolysis and respiration of the Yoshida sarcoma in vivo. J Natl Cancer Inst 63: 1371–1381.

    PubMed  CAS  Google Scholar 

  • Dietzel F (1975) Tumor and Temperatur. Urban and Schwarzenberg, Munich

    Google Scholar 

  • Dikomey E (1978) Repair of DNA strand breaks in Chinese hamster ovary cells at 37 degrees or at 42 degrees C. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Proceedings of the Second International Symposium, Essen, Germany, 2–4 June 1977. Urban and Schwarzenberg, Munich, pp 146–149

    Google Scholar 

  • Dikomey E (1982) Effect of hyperthermia at 42° C and 45° C on repair of radiation-induced DNA strand breaks in CHO cells. Int J Radiat Biol 41: 603–614

    CAS  Google Scholar 

  • Dube DK, Seal G, Loeb LA (1977) Differential heat sensitivity of mammalian DNA polymerase. Biochem Biophys Res Commun 76: 483–487

    CAS  Google Scholar 

  • Durand RE (1978) Potentiation of radiation lethality by hyperthermia in a tumor model: effects of sequence, degree and duration of heating. Int J Radiat Oncol Biol Phys 4: 401–406

    PubMed  CAS  Google Scholar 

  • Eickhoff J, Dikomey E (1984) Development and decay of acutely induced thermotolerance in CHO cells by different heat shocks at various external pH values. In: Overgaard J (ed) Hyperthermic oncology, vol 1. Taylor and Francis, London, pp 91–94

    Google Scholar 

  • Elkind MM, Sutton H, Moses WB (1967) Sublethal and lethal radiation damage. Nature 214: 1088–1092

    PubMed  CAS  Google Scholar 

  • Field SB (1978) The response of normal tissue to hyperthermia alone or in combination with X-rays. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Proceedings of the Second International Symposium, Essen, Germany, 2–4 June 1977. Urban and Schwarzenberg, Baltimore, pp 37–48

    Google Scholar 

  • Field SB, Hume S, Law MP, Morris C, Meyers R (1976) Some effects of combined hyperthermia and ionizing radiation on normal tissues. In: Proceedings of the international symposium on radio-biology research needed for the improvement of radiotherapy. IAEC, Vienna

    Google Scholar 

  • Francesconi R, Mayer M (1979) Heat-and excercise-induced hyperthermia: Effects on high-energy phosphate. Aviat Space Environ Med 50: 799–802

    Google Scholar 

  • Frankel HM, Ferrante FL (1966) Effects of pCO2 on appearance of increased lactate during hyperthermia. Am J Physiology 210: 1269–1272

    CAS  Google Scholar 

  • Frascella D, Frankel HM (1969) Liver pyridine nucleotides, lactate, and pyruvate in hyperthermic rats. Am J Physiology 217: 207–209

    CAS  Google Scholar 

  • Freeman ML, Dewey WC, Hopwood LE (1977) Effect of pH on hyperthermic cell survival. J Natl Cancer Inst 58: 1837–1839

    PubMed  CAS  Google Scholar 

  • George KC, Singh BB (1982) Synergism of chlorpromazine and hyperthermia in two mouse solid tumours. Br J Cancer 45: 309–313

    PubMed  CAS  Google Scholar 

  • George KC, Singh BB (1985) Hyperthermic response of a mouse fibrosarcoma as modified by phenothiazine drug. Br J Cancer 51: 737–738

    PubMed  CAS  Google Scholar 

  • Gerner EW (1984) Definition of thermal dose. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 245–251

    Google Scholar 

  • Gerner EW (1984) Biological isoeffect relationships and dose for temperature induced cytotoxicity. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 253–262.

    Google Scholar 

  • Gerner EW, Schneider MJ (1975) Induced thermal resistance in HeLa cells. Nature 256: 500–502.

    PubMed  CAS  Google Scholar 

  • Gerner EW, Leith JT (1977) Interaction of hyperthermia with radiation of different linear energy transfer. Int J Radiat Biol 31: 238–288

    Google Scholar 

  • Gerner EW, Connor WG, Boone MLM, Doss JD, Mayer EG, Miller RG (1975) The potential of localized heating as an adjunct to radiation therapy. Radiology 116: 433–489

    PubMed  CAS  Google Scholar 

  • Gerner EW, Leith JT, Boone MLM (1976) Mammalian cell survival response following irradiation with 4 MeV X-rays or accelerated helium ions combined with hyperthermia. Radiology 119: 715–720

    PubMed  CAS  Google Scholar 

  • Gerner EW, Holmes PW, McCullough JA (1979) Influence of growth state on several thermal response of EMT-6/Az tumor cells in vitro. Cancer Res 39: 981–986

    PubMed  CAS  Google Scholar 

  • Gerweck LE (1977) Modification of cell lethality at elevated temperatures: the pH effect. Radiat Res 70: 224–235

    PubMed  CAS  Google Scholar 

  • Gerweck LE (1978) Influence of microenvironmental condition on sensitivity to hyperthermia or radiation for cancer therapy. In: Caldwell W, Durand R (eds) Proceedings of the symposium on clinical prospects of hypoxic cell sensitizers and hyperthermia. University of Wisconsin, Madison

    Google Scholar 

  • Gerweck LE (1982) Effect of microenvironmental factors on the response of cells to single and fractionated heat treatments. Natl Cancer Inst Monogr 61: 19–25

    PubMed  CAS  Google Scholar 

  • Gerweck LE (1984) Environmental and vascular effect. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 253–262

    Google Scholar 

  • Gerweck LE, Richards B (1981) Influence of pH on the thermal sensitivity of cultured human glioblastoma cells. Cancer Res 41: 845–849

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Bascomb F (1982) Influence of hypoxia on the development of thermotolerance. Radi-at Res 90: 356–361

    CAS  Google Scholar 

  • Gerweck LE, Delaney TF (1984) Persistence of thermotolerance in slowly proliferating plateau phase cells. Radiat Res 97: 365–372

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Epstein LF (1985) Cell proliferation, protein turnover, and the decay of thermotolerance in CHO cells. Radiat Res (to be published )

    Google Scholar 

  • Gerweck LE, Nygaard TG, Burlett M (1979) Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res 39: 966–972

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Richards B, Michaels HB (1982) Influence of low pH on the development and decay of 42° C thermotolerance in CHO cells. Int J of Radiat Oncol Biol Phys 8: 1935–1941

    CAS  Google Scholar 

  • Giovanella BC, Morgan AC, Stehlin JA, Williams LJ (1973) Selective lethal effect of supranormal temperatures on mouse sarcoma cells. Cancer Res 33: 2568–2578

    PubMed  CAS  Google Scholar 

  • Giovanella BC, Stehlin JS, Morgan AC (1976) Selective lethal effects of supranormal temperatures on human neoplastic cells. Cancer Res 36: 3944–3950

    PubMed  CAS  Google Scholar 

  • Goldin EM, Leeper DB (1981) The effect of low pH on thermotolerance induction using fractionated 45° C hyperthermia. Radiat Res 85: 472–479

    PubMed  CAS  Google Scholar 

  • Hahn GM (1974) Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34: 3117–3123

    PubMed  CAS  Google Scholar 

  • Hahn GM (1980) Comparison of the malignant potential of 10T1/2 cells and transformants with their survival responses to hyperthermia and to amphotericin B. Cancer Res 40: 3763–3767.

    PubMed  CAS  Google Scholar 

  • Hahn GM (1982) Hyperthermia and cancer. Plenum, New York

    Google Scholar 

  • Hall E (1978) Radiobiology for the radiologist. Harper and Row, Hagestown

    Google Scholar 

  • Hand JW, Walker H, Hornsey S, Field SB (1979) Effect of hyperthermia on the mouse testis and its response to X-rays, as assayed by weight loss. Int J Radiat Biol 35: 521–528

    CAS  Google Scholar 

  • Harisiadis L, Hall EJ, Kraljevic U, Borek C (1975) Hyperthermia: biological studies at the cellular level. Radiology 117: 447–452

    PubMed  CAS  Google Scholar 

  • Havemann J (1983) Influence of a prior heat treatment on the enhancement by hyperthermia of Xray-induced inactivation of cultured mammalian cells. Int J Radiat Biol 43: 267–280

    Google Scholar 

  • Havemann J (1983) Influence of pH and thermotolerance on the enhancement of X-ray induced inactivation of cultured mammalian cells by hyperthermia. Int J Radiat Biol 43: 281–289

    Google Scholar 

  • Havemann J, Hahn GM (1981) The role of energy in hyperthermia-induced mammalian cell inactivation: a study of the effects of glucose starvation and an uncoupler of oxidative phosphorylation. J Cell Physiol 107: 237–241

    Google Scholar 

  • Heddle JA (1973) A rapid in vivo test for chromosomal damage. Mutation Res 18: 187–190.

    PubMed  CAS  Google Scholar 

  • Hengstebeck S (1983) Untersuchungen zum Intermediärstoffwechsel in der Leber and in einem Adenocarcinom der Maus nach Hyperthermie. Dissertation, Universität-Gesamthochschule Essen

    Google Scholar 

  • Henle KJ (1982) Thermotolerance in the murine jejenum. J Natl Cancer Int 68: 1033–1036.

    CAS  Google Scholar 

  • Henle KJ, Leeper DB (1976) Interaction of hyperthermia and radiation in CHO cells: recovery Idnetics. Radiation Res 66: 505–518

    PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1979) Effects of hyperthermia (45° C) on macromolecular synthesis in Chinese hamster ovary cells. Cancer Res 39: 2665–2674

    PubMed  CAS  Google Scholar 

  • Henle KJ, Bitner AF, Dethlefsen LA (1979) Induction of thermotolerance by multiple heat fractions in Chinese hamster ovary cells. Cancer Res 39: 2486–2491

    PubMed  CAS  Google Scholar 

  • Henle KJ, Peck JW, Higashikubo R (1983) Protection against heat-induced cell killing in polyols in vitro. Cancer Res 43: 1624–1627

    PubMed  CAS  Google Scholar 

  • Henle KJ, Nagle WA, Moss AJ, Herman TS (1984) Cellular ATP content of heated Chinese hamster ovary cells. Radiat Res 97: 630–633

    PubMed  CAS  Google Scholar 

  • Henriques FC, Jr (1947) Studies on thermal injury. Arch Pathol 43: 489–502

    Google Scholar 

  • Holohan EV, Highfield DP, Dewey WC (1982) Induction during G1 of heat radiosensitization in Chinese hamster ovary cells following single and fractionated heat doses. Nati Cancer Inst Monogr 61: 123–125

    Google Scholar 

  • Holohan EV, Highfield DP, Holohan PK, Dewey WC (1984) Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance. Radiat Res 97: 108–131

    Google Scholar 

  • Hume SP (1984) Experimental studies of normal tissue response to hyperthermia given alone or combined with radiation. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 53–70

    Google Scholar 

  • Hume SP (1985) Experimental studies of normal tissue response to hyperthermia given alone or combined with radiation. In: Overgaard J (ed) Hyperthermic oncology 1984, vol II. Taylor and Francis, pp 53–70

    Google Scholar 

  • Hume SP, Marigold JCL (1980) Transient, heat induced, thermal resistance in the small intestine of mouse. Radiat Res 82: 526–535

    PubMed  CAS  Google Scholar 

  • Hume SP, Rogers MA, Field SB (1978) Two qualitatively different effects of hyperthermia on acid phosphatase staining in mouse spleen, dependent on the severity of the treatment. Int J Radiat Biol 34: 401–409

    CAS  Google Scholar 

  • Hume SP, Marigold JCL, Field SB (1979) The effects of local hyperthermia on the small intestine of mouse. Br J Radiol 52: 657–662

    PubMed  CAS  Google Scholar 

  • Hume SP, Marigold JC, Michalowski A (1983) The effect of local hyperthermia on non proliferative, compared with proliferative, epithelial cells of the mouse intestinal mucosa. Radiat Res 94: 252–262

    PubMed  CAS  Google Scholar 

  • Hume SP, Myers R (1984) An unexpected effect of hyperthermia in the expression of X-ray damage in mouse skin. Radiat Res 97: 186–199

    PubMed  CAS  Google Scholar 

  • Issa MM (1985) Hyperthermie an Dünndarm der Maus. Eine licht-and elektronenmikroskopische Untersuchung. J. naugural dissertation, Universität Essen

    Google Scholar 

  • Issel RD, Bournier S, Youngman R cited in: Leeper DB (1985) Molecular and cellular mechanisms of hyperthermia alone or combined with other modalities. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 9–40

    Google Scholar 

  • Jähde E, Rajewsky MF (1982) Sensitization of clonogenic malignant cells to hyperthermia by glucose-mediated, tumour-selective pH reduction. J Cancer Res Clin Oncol 104: 23–30

    PubMed  Google Scholar 

  • Jorritsma JBM, Konings AWT (1983) Inhibition of radiation-induced strand breaks by hyperthermia and its relationship to cell survival after hyperthermia alone. Int J Radiat Biol 43: 505–516

    CAS  Google Scholar 

  • Jorritsma JBM, Kampinga HH, Konings AWT (1984) Role of DNA polymerase in the mechanisms of damage by heat and heat plus radiation in mammalian cells. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 61–64

    Google Scholar 

  • Joshi DS, Jung H (1979) Thermotolerance and sensitization induced in CHO cells by fractionated hyperthermic treatments at 38° -45° C. Eur J Cancer 15: 345–350

    PubMed  CAS  Google Scholar 

  • Jung H (1982) Interaction of thermotolerance and thermosensitization induced in CHO cells by combined hyperthermic treatments at 40° and 43° C. Radiat Res 91: 433–446

    PubMed  CAS  Google Scholar 

  • Jung H, Kölling H (1980) Induction of thermotolerance and sensitization in CHO cells by combined hyperthermic treatments at 40° and 43° C. Eur J Cancer 16: 1523–1528

    PubMed  CAS  Google Scholar 

  • Kal HB, Hahn GM (1976) Kinetic responses of murine sarcoma cells to radiation and hyperthermia in vivo and in vitro. Cancer Res 36: 1923–1929

    PubMed  CAS  Google Scholar 

  • Kal HB, Hatfield M, Hahn GM (1975) Cell cycle progression of murine sarcoma cells after X-irradiation or heat shock. Radiology 117: 215–217

    PubMed  CAS  Google Scholar 

  • Kase K, Hahn GM (1975) Differential heat response of normal and transformed human cells in tissue culture. Nature 255: 228–230

    PubMed  CAS  Google Scholar 

  • Kiefer J, Kraft-Weyrather W, Hlawica M (1976) Cellular radiation effects and hyperthermia influence of exposure temperature on survival of diploid yeast irradiated under oxygenated and hypoxic conditions. Int J Radiat Biol 30: 293–300

    CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1975a) The radiosensitization of hypoxic tumor cells by hyperthermia. Radiology 114: 727–728

    CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1975b) Enhanced killing of hypoxic tumor cells by hyperthermia. Br J Radiol 48: 872–874

    CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1976) The enhanced killing of irradiated HeLa cells in synchronous culture by hyperthermia. Radiat Res 66: 337–345

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1978) Selective potentiation of hyperthermia killing of hypoxic cells by 5-thio-D-glucose. Cancer Res 38: 2935–2938

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW, Ensign NA (1980) Selective killing of glucose and oxygen-deprived HeLa cells by hyperthermia. Cancer Res 40: 3459–3462

    PubMed  CAS  Google Scholar 

  • Kim JH, Kim SH, Alfieri A, Young CW (1984) Quercetin, an inhibitor of lactate transport and a hyperthermic sensitizer of HeLa cells. Cancer Res 44: 102–106

    PubMed  CAS  Google Scholar 

  • Konings AWT, Penninga P (1983) Role of reduced glutathione in cellular heat sensitivity and thermotolerance. Strahlentherapie 159: 377–378

    Google Scholar 

  • Konings AWT, Penninga P (1984) Role of reduced glutathione protein thiols, and pentose phosphate pathway in heat sensitivity and thermotolerance. Proc 4th Int Symp Hyperthermia Oncology. Aarhus, Denmark, 2–6 July 1984, pp 115–118

    Google Scholar 

  • Landry J, Chretien P (1983) Relationship between hyperthermia induced heat shock proteins and thermotolerance in Morris hepatoma cells. Can J Biochem Cell Biol 61: 428–437

    PubMed  CAS  Google Scholar 

  • Langendorff H, Langendorff M (1943) Über die Wirkung einer mit Ultrakurzwelle kombinierte Röntgenbehandlung auf das Ehrlich-Karzinom der Maus. Strahlentherapie 72: 211–219

    Google Scholar 

  • Law MP, Ahier RG (1982) Long-term thermal sensitivity of previously irradiated skin. Br J Radiol 55: 913–915

    PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG, Field SB (1978) The response of the mouse ear to heat applied alone or combined with X-rays. Br J Radiol 51: 132–138

    PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG, Field SB (1979) The effect of prior heat treatment on the thermal enhancement of radiation damage in the mouse ear. Br J Radiol 52: 315–321

    PubMed  CAS  Google Scholar 

  • Leeper DB (1985) Molecular and cellular mechanisms of hyperthermia alone or combined with other modalities. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 9–40

    Google Scholar 

  • Leith JT, Miller RC, Gerner EW, Boone MLM (1977) Hyperthermic potentiation. Biological aspects and applications to radiation therapy. Cancer 39: 766–779

    Google Scholar 

  • Lepock JR (1982) Involvement of membranes in cellular responses to hyperthermia. Radiat Res 92: 433–438

    PubMed  CAS  Google Scholar 

  • Lepock JR, Massicotte-Nolan P, Ruled GS, Kruuv J (1981) Lack of correlation between hyperthermic cell killing, thermotolerance, and membrane lipid fluidity. Radiat Res 87: 300–313

    PubMed  CAS  Google Scholar 

  • Lepock JR, Cheng KH, Al-Qysi H, Kruuv J (1983) Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: relationship to hyperthermic cell killing. Can J Biochem Cell Biol 61: 421–427

    PubMed  CAS  Google Scholar 

  • Li GC, Hahn GM (1980a) A proposed operational model of thermotolerance based on effects of nutrients and the initial treatment temperature. Cancer Res 40: 4501–4508

    CAS  Google Scholar 

  • Li GC, Hahn GM (1980b) Adaptation to different growth temperatures modifies some mammalian cell survival responses. Exp Cell Res 128: 475–485

    PubMed  CAS  Google Scholar 

  • Li GC, Shiu EC, Hahn GM (1980) Similarities in cellular inactivation by hyperthermia or by ethanol. Radiat Res 82: 257–268

    PubMed  CAS  Google Scholar 

  • Li GC, Petersen NS, Mitchell HK (1982a) Induced thermal tolerance and heat shock protein synthesis in Chinese hamster ovary cells. Int J Radiat Oncol Biol Phys 8: 63–67

    CAS  Google Scholar 

  • Li GC, Fisher GA, Hahn GM (1982b) Induction of thermotolerance and evidence for a well-defined thermotropic cooperative process. Radiat Res 89: 361–368

    PubMed  CAS  Google Scholar 

  • Li GC, Shrieve DC, Werb A ( 1982 c) Correlations between synthesis of heat-shock proteins and development of tolerance to heat and to Adriamycin and Chinese hamster fibroblasts: heat shock and other inducers. In: Schlesinger MJ, Ashburner M, Tissieres (eds) Heat shock. Cold Spring Harbor, New York

    Google Scholar 

  • Lin PS, Turi A, Kwock L, Lu RC (1982) Hyperthermia effect on microtubule organization. Natl Cancer Inst Monogr 61: 57–60

    Google Scholar 

  • Loshek DD, On JS, Solomonidis E (1977 a) Interaction of hyperthermia and radiation: the survival surface. Br J Radiol 50: 893–901

    CAS  Google Scholar 

  • Loshek DD, On JS, Solomonidis E (1977 b) Interaction of hyperthermia and radiation: temperature coefficient of interaction. Br J Radiol 50: 902–907

    CAS  Google Scholar 

  • Loshek DD, On JS, Solomonidis E (1981) Interaction of hyperthermia and radiation: radiation quality. Br J Radiol 54: 40–47

    CAS  Google Scholar 

  • Loven DP, Leeper DB, Oberley LW (1985) Superoxide dissmutase levels in Chinese hamster ovary cells and ovarian carcinoma cells after hyperthermia or exposure to cycloheximide. Cancer Res 45: 3029–3033

    PubMed  CAS  Google Scholar 

  • Lücke-Huhle C, Dertinger H (1977) Kinetic response of an in vitro “tumor model” (V99 spheroids) to 42° C hyperthermia. Eur J Cancer 13: 23–28

    PubMed  Google Scholar 

  • Lunec J, Cresswell SR (1983) Heat-induced thermotolerance expressed in the energy metabolism of mammalian cells. Radiat Res 93: 588–597

    PubMed  CAS  Google Scholar 

  • Lunec J, Hesslewood JP, Parker R, Leaper S (1981) Hyperthermic enhancement of radiation cell killing in HeLa S3 cells and its effect on the production and repair of DNA strand breaks. Radiat Res 85: 116–125

    PubMed  CAS  Google Scholar 

  • Magun BE, Fennie ChW (1981) Effects of hyperthermia on binding, internalization, and degradation of epidermal growth factor. Radiat Res 86: 133–146

    PubMed  CAS  Google Scholar 

  • Martinez A, Fajardo LF, Kernahan P, Prionas S, Hahn GM (1980) The effects of radio frequency heating on normal fat and muscular tissues: a histologically based tissue injury grading system. Presented at the third international symposium: cancer therapy by hyperthermia, drugs and radiation, Fort Collins, Co., June 22–26

    Google Scholar 

  • Martinez AA, Meshorer A, Meyer JL, Hahn GM, Fajardo LF, Prionas SD (1983) Thermal sensitivity and thermotolerance in normal porcine tissues. Cancer Res 43: 2072–2075

    PubMed  CAS  Google Scholar 

  • Massicotte-Nolan P, Glofcheski DJ, Kruuv J, Lepock JR (1981) Relationship between hyperthermic cell killing and protein denaturation by alcohols. Radiat Res 87: 284–299

    PubMed  CAS  Google Scholar 

  • McCormick W, Penman SH (1969) Regulation of protein synthesis in HeLa cells: translation at elevated temperatures. J Mol Biol 39: 315–333

    PubMed  CAS  Google Scholar 

  • Mehdi SQ, Recktenwald DJ, Smith LM, Li GC, Armour EP, Hahn GM (1984) Effect of hyperthermia on murine cell surface histocompatibility antigens. Cancer Res 44: 3394–3397

    PubMed  CAS  Google Scholar 

  • Meyer KR, Hopwood LE, Gillette EL (1979) The thermal response of mouse adenocarcinoma cells at low pH. Eur J Cancer 15: 1219–1222

    PubMed  CAS  Google Scholar 

  • Milligan AJ, Metz JA, Leeper DB (1984) Effect of inestinal hyperthermia in the Chinese hamster. Int J Radiat Oncol Biol Phys 10: 259–263

    PubMed  CAS  Google Scholar 

  • Mills MD, Meyn RE (1983) Hyperthermic potentiation on unrejoined DNA strand breaks following irradiation. Radiat Res 95: 327–338

    PubMed  CAS  Google Scholar 

  • Mirtsch Sch, Streffer C, van Beuningen D, Rebmann A (1984) ATP metabolism in human melanoma cells after treatment with hyperthermia (42° C). In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 19–22

    Google Scholar 

  • Mitchell JB, Russo A, Kinsella TJ, Glatstein E (1983) Glutathione elevation during thermotolerance induction and thermosensitization by glutathione depletion. Cancer Res 43: 987–991

    PubMed  CAS  Google Scholar 

  • Mondovi B, Strom R, Rotilio G et al. (1969) The biochemical mechanism of selective heat sensitivity of cancer cells. I. Studies on cellular respiration. Eur J Cancer 5: 129–136

    PubMed  CAS  Google Scholar 

  • Mondovi B, Finatti-Agro A, Rotilio G, Strom R, Moricca G, Rossi-Fanelli A (1969) The biochemical mechanism of selective heat sensitivity of cancer cells. II. Studies on nucleic acids and protein synthesis. Eur J Cancer 5: 137–146

    Google Scholar 

  • Monson TP, Henle KJ, Moss M, Nagle WA (1984) Experimental test of the polyol hypothesis: the effect of aldose reductase inhibitors on thermotolerance development and measurements of intracellular sugar and polyol content in thermotolerant CHO cells. (Abstract) Proc 32nd annu mtg radiation research soc, Orlando, Florida, p 52

    Google Scholar 

  • Morris CC, Myers R, Field SB (1977) The response of the rat tail to hyperthermia. Br J Radiol 50: 576

    PubMed  CAS  Google Scholar 

  • Moritz A, Henriques FC (1947) Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol 23: 695–720

    Google Scholar 

  • Nagle WA, Moss AJ, Jr (1983) Inhibitors of poly (ADP-ribose) synthetase enhance the cytotoxicity of 42° C and 45° C hyperthermia in cultured Chinese hamster cells. Int J Radiat Biol 44: 475–481

    CAS  Google Scholar 

  • Nagle WA, Moss AJ, Baker ML (1982) Increased lethatlity at 42° C for hypoxic Chinese hamster cells heated under conditions of energy depreviation. Natl Cancer Inst Monogr 61: 107–110

    CAS  Google Scholar 

  • Nielsen OS, Overgaard J (1982) Influence of time and temperature on the kinetics of thermotolerance in L1A2 cells in vitro. Cancer Res 42: 4190–4196

    PubMed  CAS  Google Scholar 

  • Nielsen OS (1984) Fractionated Hyperthermia and Thermotolerance. Danish Medical Bulletin Vol. 31

    Google Scholar 

  • Ngo FOH, Han A, Utsumi H, Elkind MM (1977) Comparative radiobiology of fast neutrons: relevance to radiotherapy and basic studies. Int J Radiat Oncol Biol Phys 3: 187–193

    PubMed  CAS  Google Scholar 

  • Ohyama H, Yamada T (1980) Reduction of rat thymocyte interphase death by hyperthermia. Radiat Res 82: 342–351

    PubMed  CAS  Google Scholar 

  • Omar RA, Lanks KW (1984) Heat shock protein synthesis and cell survival in clones of normal and SV40-transformed mouse embryo cells. Cancer Res 44: 3976–3982

    PubMed  CAS  Google Scholar 

  • Overgaard J (1976) Ultrastructure of a murine mammary carcinoma exposed to hyperthermia in vivo. Cancer Res 36: 983–995

    PubMed  CAS  Google Scholar 

  • Overgaard J (1977) Effect of hyperthermia on malignant cells in vivo: a review and hypothesis. Cancer 39: 2637–2646

    PubMed  CAS  Google Scholar 

  • Overgaard J (1985) History and heritage–an introduction. In: Overgaard J (ed) Hyperthermic oncology. Taylor and Francis, London, pp 3–8

    Google Scholar 

  • Overgaard J (1985) Hyperthermic oncology. Taylor and Francis, London

    Google Scholar 

  • Overgaard K (1934) Über Wärmetherapie bösartiger Tumoren. Acta Radiol (Ther) (Stockh) 15: 89–99

    Google Scholar 

  • Overgaard K, Overgaard J (1972) Investigations on the possibility of a thermic tumour therapy: II. Action of combined heat-roentgen treatment on a transplanted mouse mammary carcinoma. Eur J Cancer 8: 573–575

    Google Scholar 

  • Overgaard K, Overgaard J (1974) Radiation sensisitzing effect of heat. Acta Radiol (Ther) (Stockh) 13: 501–511

    CAS  Google Scholar 

  • Palzer R, Heidelberger C (1973) Influence of drugs and synchrony on the hyperthermic killing of HeLa cells. Cancer Res 33: 422–427

    PubMed  CAS  Google Scholar 

  • Panniers R, Henshaw EC (1984) Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich ascites tumour cells. Eur J Biochem 140: 209–214

    PubMed  CAS  Google Scholar 

  • Pincus G, Fischer A (1931) The growth and death of tissue cultures exposed to supranormal temperatures. J Exp Med 54: 323–332

    PubMed  CAS  Google Scholar 

  • Power J, Harris J (1977) Response of extremely hypoxic cells to hyperthermia: survival and oxygen enhancement ratios for exponential and plateau-phase cultures. Radiology 123: 767–770

    PubMed  CAS  Google Scholar 

  • Privalov PL (1979) Stability of proteins. In: Anfinsen CB, Edsall JT, Richards EM (eds) Advances in protein chemistry, vol 33. Academic New York, pp 167–241

    Google Scholar 

  • Radford JR (1983) Effects of hyperthermia on the repair of X-ray-induced DNA double strand breaks in mouse L cells. Int J Rad Biol 43: 551–557

    CAS  Google Scholar 

  • Rao B, Hopwood LE (1985) Effect of hypoxia on recovery from damage induced by heat and radiation in plateau-phase cells. Radiat Res 101: 312–325

    PubMed  CAS  Google Scholar 

  • Reeves O (1972) Mechanism of acquired resistance to acute heat shock in cultured mammalian cells. J Cell Physiol 79: 157–159

    PubMed  CAS  Google Scholar 

  • Reeves O (1982) Mechanism of acquired resistance to acute heat shock in cultured mammalian cells. J Cell Physiol 79: 157–159

    Google Scholar 

  • Reinhold HS, Wike-Hooley JL, van den Berg AP, and van den Berg-Blok A (1984) Environmental factors, blood flow and microcirculation. In: Overgaard J (ed) Hyperthermic oncology, vol II. Francis and Taylor, London, pp 41–52

    Google Scholar 

  • Reinhold HS, Wike-Hooley JL, van den Berg AP, and van den Berg-Blok A (1985) Environmental factors, blood flow and microcirculation. In: Overgaard J (ed) Hyperthermic oncology 1984, vol II. Taylor and Francis, London, pp 41–52

    Google Scholar 

  • Reiter T, Penman S (1983) Prompt heat shock proteins: translationally regulated synthesis of new proteins associated with the nuclear matrix-intermediate filaments as an early response to heat shock. Proc Natl Assoc Sci USA 80: 4737–4741

    CAS  Google Scholar 

  • Rice LC, Urano M, Maher J (1982) The kinetics of thermotolerance in the mouse foot. Radiat Res 89: 291–297

    PubMed  CAS  Google Scholar 

  • Robinson JE, Wizenberg MJ (1974) Thermal sensitivity and the effect of elevated temperatures on the radiation sensitivity of Chinese hamster cells. Acta Radiol (Ther) (Stockh)13: 241–249

    Google Scholar 

  • Robinson JE, Wizenberg MJ, McCready W, Scheltema J (1974b) Combined hyperthermia and radiation suggest an alternative to heavy particle therapy for reduced oxygen enhancement ratios. Nature 251: 521–522

    PubMed  CAS  Google Scholar 

  • Rofstad EK, Wahl A, Tveit KM, Monge OR, Brustad T (1985) Survival curves after X-ray and heat treatments for melanoma cells derived directly from surgical specimens of tumours in man. Radiother Oncol 4: 33–44

    PubMed  CAS  Google Scholar 

  • Roti Roti J (1982) Heat-induced cell death and radiosensitization: molecular mechanisms. Natl Cancer Inst Monogr 61: 3–9

    PubMed  CAS  Google Scholar 

  • Ruifrok ACC, Kanon B, Hulstaart CE, Konings AWT (1984) Permeability change of cells treated with hyperthermia alone and in combination with X-irradiation. In: Overgaard J (ed) Hyperthermic oncology, vol I. Taylor and Francis, London, pp 65–68

    Google Scholar 

  • Russo A, Mitchell JB, McPherson S (1984) The effects of glutathione depletion on thermotolerance and heat stress protein synthesis. Br J Cancer 49: 753–758

    PubMed  CAS  Google Scholar 

  • Sapareto S, Hopwood L, Dewey W, Raju M, Gray J (1978) Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res 38: 393–400

    PubMed  CAS  Google Scholar 

  • Schamhart DHJ, van Walraven HS, Weigant FAC, Linnemans WAM, van Rijn J, van den Berg J, van Wijk R (1984) Thermotolerance in cultured hepatoma cells: cell viability, cell morphology, protein synthesis, and heat shock proteins. Radiat Res 98: 89–95

    Google Scholar 

  • Schlag H, Lücke-Huhle C (1976) Cytokinetic studies on the effect of hyperthermia on Chinese hamster lung cells. Eur J Cancer 12: 827–831

    PubMed  CAS  Google Scholar 

  • Schlesinger MJ, Ashburner M, Tissieres A (eds) (1982) Heat shock: from bacteria to man. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Schlesinger MJ, Aliperti G, Kelley PM (1982) The response of cells to heat shock. Trends Biochem Sci 7: 222–225

    CAS  Google Scholar 

  • Schubert B, Streffer C, Tamulevicius P (1982) Glucose metabolism in mice during and after whole-body hyperthermia. Natl Cancer Inst Monogr 61: 203–205

    CAS  Google Scholar 

  • Schulman N, Hall E (1974) Hyperthermia: its effect on proliferative and plateau phase cell cultures. Radiology 113: 207–209

    Google Scholar 

  • Sciandra JJ, Subjeck JR (1984) Heat shock proteins and protection of proliferation and translation in mammalian cells. Cancer Res 44: 5188–5194

    PubMed  CAS  Google Scholar 

  • Sciandra JJ, Gerweck LE (1986) Thermotolerance in cells. In: Watmough DJ, Ross W (eds) Hyper-thermia-Clinical and Scientific Aspects. Blackie and Son Ltd., Glasgow, pp 99–120

    Google Scholar 

  • Shall S (1984) ADR-ribose in DNA repair: a new component of DNA excision repair. IN: Lett J (ed) Advances in radiation biology, vol II. Academic, Orlando, pp 1–69

    Google Scholar 

  • Shenoy MA, Singh BB (1985) Temperature dependent modification of radiosensitivity following hypoxic cytocidal action of delorpromazine Rad Envir Bio Phys 24: 113–117

    CAS  Google Scholar 

  • Simard R, Bernhard W (1967) A heat-sensitive cellular function located in the nucleolus. J Cell Biology 34: 61–76

    CAS  Google Scholar 

  • Skibba JL, Collins FG (1978) Effect of temperature on biochemical functions in the isolated per-fused rat liver. J Surg Res 24: 435–441

    PubMed  CAS  Google Scholar 

  • Song CW, Clement SS, Levitt SH (1977) Cytotoxic and radiosensitizing effects of 5-thio-D-glucose hypoxic cells. Radiology 123: 201–205

    PubMed  CAS  Google Scholar 

  • Song CW, Kang MS, Rhee JG, Levitt S (1980) Vascular damage and delayed cell death in tumours after hyperthermia. Br J Cancer 41: 309–312

    PubMed  CAS  Google Scholar 

  • Spiro IJ, Denman DL, Dewey WC (1982) Effect of hyperthermia on CHO DNA polymerase-and ß. Radiat Res 89: 134–139

    PubMed  CAS  Google Scholar 

  • Stevenson MA, Minton KW, Hahn GM (1981) Survival and concanavalin-A- induced capping in CHO fibroblasts after exposure to hyperthermia, ethanol, and X-irradiation. Radiat Res 86: 467–478

    PubMed  CAS  Google Scholar 

  • Streffer C (1963) Reaktivität und Struktur von Aminosäuren und Proteinen (Cystein und ß-Galaktosidase). Dissertation, University Freiburg

    Google Scholar 

  • Streffer C (1969) Strahlen-Biochemie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Streffer C (1982) Aspects of biochemical effects by hyperthermia. Natl Cancer Inst Monogr 61: 11–16

    PubMed  CAS  Google Scholar 

  • Streffer C (1985) Mechanism of heat injury. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 213–222

    Google Scholar 

  • Streffer C (1985) Metabolic changes during and after hyperthermia. Int J Hyperthermia 1: 305–319

    PubMed  CAS  Google Scholar 

  • Streffer C, van Beuningen D (1985) Zelluläre Strahlenbiologie und Strahlenpathologie (Ganz-und Teilkörperbestrahlung). In: Diethelm L, Heuck F, Olsson O, Strnad F, Vieten H, Zuppinger A (eds) Handbuch der medizinischen Radiologie, vol 20. Springer, Berlin Heidelberg New York Tokyo, pp 1–39

    Google Scholar 

  • Streffer C, van Beuningen D, Elias S (1977) Comparative effects of tritiated water and thymidine on the preimplanted mouse embryos in vitro. Curr Topics Radiat Res Quart 12: 182–193

    Google Scholar 

  • Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (1978) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore

    Google Scholar 

  • Streffer C, van Beuningen D, Zamboglou N (1979) Cell killing by hyperthermia and radiation in cancer therapy. In: Abe M, Sakamoto K, Phillips TL (eds) Treatment of radioresistant cancers. Elsevier/North Holland Biomedical, Amsterdam, pp 55–70

    Google Scholar 

  • Streffer C, Hengstebeck S, Tamulevicius P (1981) Glucose metabolism in mouse tumor and liver with and without hyperthermia. Henry Ford Hosp Med J 29: 41–44

    PubMed  CAS  Google Scholar 

  • Streffer C, Tamulevicius P, Schmidt K (1983) Poly (ADPR) synthetase activity in melanoma cells after hyperthermia and radiation. Radiat Res 94: 589 (Abstract)

    Google Scholar 

  • Streffer C, van Beuningen D, Bertholdt G, Zamboglou N (1983) Some aspects of radiosensitization by hyperthermia: neutrons and X-rays. In: Kano E (ed) Fundamentals of cancer therapy by hyperthermia, radiation and chemicals. MAG Bros, Tokyo, pp 121–134

    Google Scholar 

  • Streffer C, van Beuningen D, Urna Devi P (1984) Radiosensitization by hyperthermia in human melanoma cells: single and fractionated treatments. Cancer Treat Rev 11: 179–185

    PubMed  Google Scholar 

  • Strom R, Crifo C, Rossi-Fanelli A, Mondovi B (1977) Biochemical aspects of heat sensitivity of tumor cells. In: Rossi-Fanelli A, Cavaliere R, Mondovi B, Morrica G (eds) Selective heat sensitivity of cancer cells. Springer, Berlin Heidelberg New York, pp 7–35

    Google Scholar 

  • Subjek JR, Sciandra JJ, Johnson RJ (1982) Heat shock proteins: a comparison of induction kinetics. Br J Radiol 55: 579–584

    Google Scholar 

  • Suit HD, Shwayder M (1974) Hyperthermia: potential as an anti-tumor agent. Cancer 34: 122–129

    PubMed  CAS  Google Scholar 

  • Tamulevicius P, Streffer C (1983) Does hyperthermia produce increased lysosomal enzyme activity? Int J Radiat Biol 43: 321–327

    CAS  Google Scholar 

  • Tamulevicius P, Schmidt K, Streffer C (1984) The effects of X-irradiation, hyperthermia and combined modality treatment on poly ( ADPR) synthetase activity in human melanoma cells. Radiat Res 100: 65–77

    Google Scholar 

  • Tamulevicius P, Würzinger U, Luscher G, Streffer C (1984) Lipid metabolism in mouse liver and adenocarcinoma following hyperthermia. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 23–26

    Google Scholar 

  • Terasima T, Tolmach LI (1963a) Variations in several responses of HeLa cells to X-irradiation during the division cycle. Biophys J 3: 11–33

    CAS  Google Scholar 

  • Terasima T, Tolmach LJ (1963 b) X-ray sensitivity and DNA synthesis in synchronously dividing populations of HeLa cells. Science 140: 490–492

    CAS  Google Scholar 

  • Tomasovic SP, Steck PA, Heitzman D (1983) Heat stress proteins and thermal resistance in rat mammary cells. Radiat Res 95: 399–413

    PubMed  CAS  Google Scholar 

  • Tomasovic SP, Rosenblatt PL, Johnston DA, Tang K, Lee PSY (1984) Heterogeneity in induced heat resistance and its relation to synthesis of stress proteins in rat tumor cell clones. Cancer Res 44: 5850–5856

    PubMed  CAS  Google Scholar 

  • van Beuningen D (1983) Hyperthermie als cytotoxisches und strahlensensibilisierendes Agens: zelluläre Effekte–eine Übersicht. Strahlentherapie 159: 60–66

    PubMed  Google Scholar 

  • van Beuningen D, Molls M, Schulz S, Streffer C (1978) Effects of irradiation and hyperthermia on the development of preimplanted mouse embryos in vitro. In: Streffer C et al. (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 151–153

    Google Scholar 

  • van Beuningen D, Issa M, Breipohl W, Streffer C, Raumwolf M (1983) Light-and electron-microscopical investigations on the effect of hyperthermia on the small intestine ( Abstract ). Strahlentherapie 159: 367

    Google Scholar 

  • van Beuningen D, Streffer D, Spalthoff C (to be published) Effects of hyperthermia on glucose, pyruvate, and lactate metabolism in human melanoma cell cultures. Int J Hyperthermia

    Google Scholar 

  • van Beuningen D, Streffer C, Pelzer T (1985) Radiosensitization of exponential and plateau phase cells. Strahlentherapie 161: 552

    Google Scholar 

  • van Rijn J, van den Berg J, Schamhart DHJ, van Wijk R (1984) Effect of thermotolerance on thermal radiosensitization in hepatoma cells. Radiat Res 97: 318–328

    PubMed  Google Scholar 

  • Vaupel P, Müller-Klieser W, Otte J, Manz R, Kallinowski F (1983) Durchblutung, Sauerstoffversorgung des Gewebes und pH-Verteilung in malignen Tumoren nach Hyperthermie. Pathophysiologische Grundlagen und Einfluß verschiedener Hyperthermiedosen. Strahlentherapie 159: 73–81

    Google Scholar 

  • Vaupel P, Benzing H, Egelhof E, Müller-Klieser W, Müller-Schauenburg (1983) The effect of various thermal doses on the regional tumor blood flow measured by heat clearance. Strahlentherapie 159: 384 (Abstract)

    Google Scholar 

  • Verma SP, Wallach DFH (1976) Erythrocyte membranes undergo cooperative, pH-sensitive state transitions in the physiological temperature range: evidence from Raman spectroscopy. Proc Natl Acad Sci USA 73: 3558–3561

    PubMed  CAS  Google Scholar 

  • von Ardenne M (1971) The cancer multi-step therapy concept. Panminerva Med 13: 509–519

    Google Scholar 

  • von Ardenne M (1975) Prinzipien und Konzept 1974 der “Krebs-Mehrschritt-Therapie”. Radiobiol Radiother 16: 99–119

    Google Scholar 

  • von Ardenne M (1978) On a new physical principle for selective local hyperthermia of tumor tissue. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Proceedings of the Second International Symposium, Essen, 2–4 June 1977. Urban and Schwarzenberg, Baltimore München, pp 96–104

    Google Scholar 

  • von Ardenne M (1980) Hyperthermia and cancer therapy. Adv Pharmacol Chemother 10: 137–138

    Google Scholar 

  • von Ardenne M, Reitnauer P (1976) Verstärkung der mit Glukoseinfusion erzielbaren Tumorübersäuerung in vivo durch NAD. Arch Geschwulstforsch 30: 319–330

    Google Scholar 

  • von Ardenne M, Chaplain R, Reitnauer P (1969) Selektive Krebszellenschädigung durch eine Attackenkombination mit Übersäuerung Hyperthermie, Vitamin A, Dimethylsulfoxid und weiteren die Freisetzung lysosomaler Enzyme fördernden Agenzien. Arch Geschwulstforsch 33: 331–344

    Google Scholar 

  • Wallach D (1977) Basic mechanisms in tumor thermotherapy. J Mol Med 2: 381–403

    CAS  Google Scholar 

  • Wallach DHF (1978) Action of hyperthermia and ionizing radiation on plasma membranes: In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 19–28

    Google Scholar 

  • Wallenfels K, Streffer C (1964) Chemische Reaktivität von Proteinen. In: 14. Colloquium der Gesellschaft für physiologische Chemie in Mosbach/Baden. Springer, Berlin Göttingen Heidelberg, pp 6–40

    Google Scholar 

  • Wallenfels K, Streffer C (1966) Das Dissoziationsverhalten von Cystein und verwandten SH-Verbindungen. Biochem Z 346: 119–132

    CAS  Google Scholar 

  • Warburg O, Wind F, Negelein E (1926) Über den Stoffwechsel von Tumoren im Körper. Klin Wschr 5: 829–834

    CAS  Google Scholar 

  • Warocquier R, Scherrer K (1969) RNA metabolism in mammalian cells at elevated temperature. Eur J Biochem 10: 362–370

    PubMed  CAS  Google Scholar 

  • Waiters RL, Roti Roti JL (1982) Hyperthermia and the cell nucleus. Radiat Res 92: 458–462 Waiters RL, Stone OL (1983) Effects of hyperthermia on DNA replication in HeLa cells. Radiat Res 93: 71–84

    Google Scholar 

  • Waiters RL, Stone OL (1983) Histone protein and DNA synthesis by HeLa cells and thermal shock. Radiat Res 96: 646

    Google Scholar 

  • Weber G (1983) Biochemical strategy of cancer cells and the design of chemotherapy: GHA Glowes memorial lecture. Cancer Res 43: 3466–3492

    PubMed  CAS  Google Scholar 

  • Westermark F (1898) Über die Behandlung des ulcerierenden Cervixcarcinoms mittels konstanter Wärme. Zentralbl Gynakol 22: 13–35

    Google Scholar 

  • Westermark N (1927) The effect of heat on rat tumors. Skand Arch Physiol 52: 257–322

    Google Scholar 

  • Wiegant F, Karelaars A, Blok F, Linnemanns W (1984) Effects of extra cellular Ca2+ concentrations upon hyperthermia induced cell death. In: Overgaard J (ed) Hyperthermic oncology, vol I. Taylor and Francis, London, pp 3–6

    Google Scholar 

  • Wike-Hooley JL, Faithfull NS, van der Zee J, van den Berg AP (1983) Liver damage and extraction of indocyamine green under whole body hyperthermia. Eur J Appl Physiol 51: 269–279

    Google Scholar 

  • Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103: 514–527

    PubMed  CAS  Google Scholar 

  • Wizenberg M, Robinson JE (1975) Proceedings of the international symposium on cancer therapy by hyperthermia and radiation. American College of Radiology Press, Baltimore

    Google Scholar 

  • Wondergem J, Havemann J (1983) The response of previously by irradiated mouse skin to heat alone or combined with irradiation: influence of thermotolerance. Int J Radiat Oncol 44: 539–552

    CAS  Google Scholar 

  • Wong RSL, Dewey WC (1982) Molecular studies on the hyperthermie inhibition of DNA synthesis in Chinese hamster ovary cells. Radiat Res 92: 370–395

    PubMed  CAS  Google Scholar 

  • Yatvin MB (1977) The influence of membrane lipid composition and procaine on hyperthermic death of cells. Int J Radiat Biol 32: 513–521

    CAS  Google Scholar 

  • Yatvin MB, Cree TC, Elson CE, Gipp JJ, Tegmo I-M, Vorpahl JW (1982) Probing the relationship of membrane “fluidity” to heat killing of cells. Radiat Res 89: 644–646

    PubMed  CAS  Google Scholar 

  • Yatvin MB, Abuirmeileh NM, Vorpahl JW, Elson CE (1983) Biological optimization of hyperthermia: modification of tumor membrane lipids. Eur J Cancer 19: 657–663

    CAS  Google Scholar 

  • Yatvin M-B, Vorpahl JW, Gould MN, Lyte M (1983) The effects of membrane modification and hyperthermia on the survival of P-388 and V-79 cells. Eur J Cancer 19: 1247–1253

    CAS  Google Scholar 

  • Yi PN (1983) Hyperthermia-induced intracellular ionic level changes in tumor cells. Radiat Res 93: 534–544

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Streffer, C., van Beuningen, D. (1987). The Biological Basis for Tumour Therapy by Hyperthermia and Radiation. In: Streffer, C. (eds) Hyperthermia and the Therapy of Malignant Tumors. Recent Results in Cancer Research, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82955-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82955-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82957-4

  • Online ISBN: 978-3-642-82955-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics