Skip to main content

Summary

The paper analyzes a splitting technique into fast and slow dynamical components of ODE systems as suggested by Maas And Poperecently. Their technique is based on a real block — Schur decomposition of the Jacobian of the right hand side of the ODE. As a result of the analysis, a computationally cheap monitor for the possible necessary recovering of the splitting is derived by singular perturbation theory. Numerical experiments on moderate size, but challenging reaction kinetics problems document the efficiency of the new device within a linearly-implicit stiff integrator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G.Bader, U.Nowak, P.Deuflhard: An advanced simulation package for large chemical reaction systems. In: R.Aiken (ed.): Stiff Computation. Oxford Univ. Press, pp. 255–264 (1985)

    Google Scholar 

  2. P.Deuflhard, G.Bader, U.Nowak: LARKIN - a Software Package for the Numerical Simulation of LARge Systems Arising in Chemical Reaction KINetics. in [7], pp. 38–55 (1981)

    Google Scholar 

  3. P.Deuflhard, F.Bornemann: Numerische Mathematik II. Integration gewöhnlicher Differentialgleichungen. de Gruyter: Berlin, New York (1994)

    Google Scholar 

  4. P.Deuflhard, E.Hairer, J.Zugck: One-step and Extrapolation Methods for Differential-Algebraic Systems. Numer. Math., vol 51, pp. 501–516 (1987)

    Article  Google Scholar 

  5. P.Deuflhard, A.Hohmann: Numerical Analysis. A First Course in Scientific Computation, de Gruyter: Berlin, New York (1993)

    Google Scholar 

  6. P.Deuflhard, U.Nowak: Efficient Numerical Simulation and Identification of Large Chemical Reaction Systems. Ber. Bunsenges. Phys. Chem., vol 90, pp. 940–946 (1986)

    CAS  Google Scholar 

  7. K.H.Ebert, P.Deuflhard, W.Jager (eds.) Modelling of Chemical Reaction Systems. Springer Series in Chem Phys, vol 18, Berlin, Heidelberg, New York (1981)

    Google Scholar 

  8. L.A.Farrow, D.Edelson: The steady-state approximation, fact or fiction? Int. J.Chem.Kin, vol 6, pp. 787ff. (1974)

    Article  CAS  Google Scholar 

  9. J.Field, R.M.Noyes: Oscillations in Chemical Systems. IV: Limit cycle behaviour in a model of a real chemical reaction. J.Chem.Phys, vol 60, pp. 1877–1884 (1974)

    Article  CAS  Google Scholar 

  10. G.H.Golub, Ch.F.van Loan: Matrix Computations. Johns Hopkins University Press (1985)

    Google Scholar 

  11. G.H.Golub, J.H.Wilkinson: Ill-conditioned Eigensystems and Computation of the Jordan Canonical Form. SIAM Review 18, pp. 578–619 (1976)

    Article  Google Scholar 

  12. E.Hairer, G.Wanner: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer Series in Comp. Math., vol 14, Berlin, Heidelberg, New York (1991)

    Google Scholar 

  13. J.Heroth: Adaptive Dimensionsreduktion chemischer Reaktionssysteme. Freie Universitat Berlin, Diploma thesis (1995)

    Google Scholar 

  14. F.C.Hoppensteadt, P.Alfeld, R.Aiken: Numerical Treatment of Rapid Chemical Kinetics by Perturbation and Projection Methods, in: [7], pp. 31–37 (1981)

    Google Scholar 

  15. G.Isbarn, H. J.Ederer, E.H.Ebert The Thermal Decomposition of n-Hexane: Kinetics, Mechanism and Simulation, in: [7], pp. 235–248 (1981)

    Google Scholar 

  16. LAPACK. User’s Guide, Philadelphia (1992)

    Google Scholar 

  17. U.Maas: Automatische Reduktion von Reaktionsmechanismen zur Simulation reaktiver Strömungen. Institut fur Technische Verbrennung der Universitat Stuttgart, Habilitation thesis, (1993)

    Google Scholar 

  18. U.Maas, S.B.Pope: Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space. Combustion and Flame, vol 88, pp. 239–264, (1992)

    Article  CAS  Google Scholar 

  19. R.E.O’Malley: Introduction to Singular Perturbations. Academic Press, New York (1974)

    Google Scholar 

  20. W.C.Rheinboldt: Differential-Algebraic Systems as Differential Equations on Manifolds. Math. Comp. vol 43, pp. 473–482 (1984)

    Article  Google Scholar 

  21. A.B.Vasil’eva: Asymptotic Behaviour of Solutions to Certain Problems involving Nonlinear Differential Equations… Usp. Mat. Nauk (Russian) vol 18, pp. 15–86 (1963). Russian Math. Surveys, vol 18, Nr.3, pp.13–84 (Translation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deuflhard, P., Heroth, J. (1996). Dynamic Dimension Reduction in ODE Models. In: Keil, F., Mackens, W., Voß, H., Werther, J. (eds) Scientific Computing in Chemical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80149-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80149-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80151-8

  • Online ISBN: 978-3-642-80149-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics