Skip to main content

Matrix Equations, Sparse Solvers: M-M.E.S.S.-2.0.1—Philosophy, Features, and Application for (Parametric) Model Order Reduction

  • Chapter
  • First Online:
Model Reduction of Complex Dynamical Systems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 171))

Abstract

Matrix equations are omnipresent in (numerical) linear algebra and systems theory. Especially in model order reduction (MOR), they play a key role in many balancing-based reduction methods for linear dynamical systems. When these systems arise from spatial discretizations of evolutionary partial differential equations, their coefficient matrices are typically large and sparse. Moreover, the numbers of inputs and outputs of these systems are typically far smaller than the number of spatial degrees of freedom. Then, in many situations, the solutions of the corresponding large-scale matrix equations are observed to have low (numerical) rank. This feature is exploited by M-M.E.S.S. to find successively larger low-rank factorizations approximating the solutions. This contribution describes the basic philosophy behind the implementation and the features of the package, as well as its application in the MOR of large-scale linear time-invariant (LTI) systems and parametric LTI systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amsallem, D., Farhat, C.: An online method for interpolating linear parametric reduced-order models. SIAM J. Sci. Comput. 33(5), 2169–2198 (2011). https://doi.org/10.1137/100813051

    Article  MathSciNet  MATH  Google Scholar 

  2. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems, Advances in Design and Control, vol. 6. SIAM Publications, Philadelphia (2005). https://doi.org/10.1137/1.9780898718713

  3. Batten King, B., Hovakimyan, N., Evans, K.A., Buhl, M.: Reduced order controllers for distributed parameter systems: LQG balanced truncation and an adaptive approach. Math. Comput. Model. 43(9), 1136–1149 (2006). https://doi.org/10.1016/j.mcm.2005.05.031

    Article  MathSciNet  MATH  Google Scholar 

  4. Baur, U., Beattie, C.A., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput. 33(5), 2489–2518 (2011). https://doi.org/10.1137/090776925

    Article  MathSciNet  MATH  Google Scholar 

  5. Baur, U., Benner, P.: Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation (Model reduction for parametric systems using balanced truncation and interpolation). at-Automatisierungstechnik 57(8), 411–420 (2009). https://doi.org/10.1524/auto.2009.0787

  6. Bendixson, I.: Sur les racines d’une équation fondamentale. Acta Math. 25(1), 359–365 (1902). https://doi.org/10.1007/BF02419030

    Article  MathSciNet  MATH  Google Scholar 

  7. Benner, P., Bujanović, Z., Kürschner, P., Saak, J.: RADI: a low-rank ADI-type algorithm for large scale algebraic Riccati equations. Numer. Math. 138(2), 301–330 (2018). https://doi.org/10.1007/s00211-017-0907-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Benner, P., Goyal, P.: Balanced truncation model order reduction for quadratic-bilinear systems (2017). arXiv preprint arXiv:1705.00160 [math.OC]

  9. Benner, P., Grundel, S., Hornung, N.: Parametric model order reduction with a small \({\cal{H}}_2\)-error using radial basis functions. Adv. Comput. Math. 41(5), 1231–1253 (2015). https://doi.org/10.1007/s10444-015-9410-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Benner, P., Gugercin, S., Willcox, K.: A survey of model reduction methods for parametric systems. SIAM Rev. 57(4), 483–531 (2015). https://doi.org/10.1137/130932715

    Article  MathSciNet  MATH  Google Scholar 

  11. Benner, P., Heiland, J.: LQG-balanced truncation low-order controller for stabilization of laminar flows. In: King, R. (ed.) Active Flow and Combustion Control 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 127, pp. 365–379. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-11967-0_22

  12. Benner, P., Kürschner, P.: Computing real low-rank solutions of Sylvester equations by the factored ADI method. Comput. Math. Appl. 67(9), 1656–1672 (2014). https://doi.org/10.1016/j.camwa.2014.03.004

    Article  MathSciNet  MATH  Google Scholar 

  13. Benner, P., Kürschner, P., Saak, J.: Low-rank Newton-ADI methods for large nonsymmetric algebraic Riccati equations. J. Frankl. Inst. 353(5), 1147–1167 (2016). https://doi.org/10.1016/j.jfranklin.2015.04.016

    Article  MathSciNet  MATH  Google Scholar 

  14. Benner, P., Li, J.R., Penzl, T.: Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer. Linear Algebr. Appl. 15(9), 755–777 (2008). https://doi.org/10.1002/nla.622

    Article  MathSciNet  MATH  Google Scholar 

  15. Benner, P., Saak, J.: A semi-discretized heat transfer model for optimal cooling of steel profiles. In: Benner, P., Mehrmann, V., Sorensen, D. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 353–356. Springer, Berlin/Heidelberg (2005). https://doi.org/10.1007/3-540-27909-1_19

  16. Benner, P., Saak, J., Schieweck, F., Skrzypacz, P., Weichelt, H.K.: A non-conforming composite quadrilateral finite element pair for feedback stabilization of the Stokes equations. J. Numer. Math. 22(3), 191–220 (2014). https://doi.org/10.1515/jnma-2014-0009

    Article  MathSciNet  MATH  Google Scholar 

  17. Benner, P., Saak, J., Uddin, M.M.: Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numer. Algebr. Control Optim. 6(1), 1–20 (2016). https://doi.org/10.3934/naco.2016.6.1

    Article  MathSciNet  MATH  Google Scholar 

  18. Benner, P., Werner, S.W.R.: MORLAB – the Model Order Reduction LABoratory (2020). arXiv preprint arXiv: 2002.12682 [Cs.MS]. https://doi.org/10.1007/978-3-030-72983-7_19

  19. Breiten, T.: Interpolatory methods for model reduction of large-scale dynamical systems. Dissertation, Department of Mathematics, Otto-von-Guericke University, Magdeburg, Germany (2013). https://doi.org/10.25673/3917

  20. Castagnotto, A., Cruz Varona, M., Jeschek, L., Lohmann, B.: sss & sssMOR: analysis and reduction of large-scale dynamic systems in MATLAB. at-Automatisierungstechnik 65(2), 134–150 (2017). https://doi.org/10.1515/auto-2016-0137

  21. Chebfun Developers: Chebfun — numerical computing with functions. https://www.chebfun.org/

  22. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications (2014). http://www.chebfun.org/docs/guide/

  23. Fehr, J., Grunert, D., Holzwarth, P., Fröhlich, B., Walker, N., Eberhard, P.: Morembs—a model order reduction package for elastic multibody systems and beyond. In: Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing, pp. 141–166. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-75319-5_7

  24. Freitas, F., Rommes, J., Martins, N.: Gramian-based reduction method applied to large sparse power system descriptor models. IEEE Trans. Power Syst. 23(3), 1258–1270 (2008). https://doi.org/10.1109/TPWRS.2008.926693

    Article  Google Scholar 

  25. Geuß, M., Butnaru, D., Peherstorfer, B., Bungartz, H., Lohmann, B.: Parametric model order reduction by sparse-grid-based interpolation on matrix manifolds for multidimensional parameter spaces. In: Proceedings of the European Control Conference, Strasbourg, France, pp. 2727–2732 (2014). https://doi.org/10.1109/ECC.2014.6862414

  26. Geuß, M., Panzer, H., Wirtz, A., Lohmann, B.: A general framework for parametric model order reduction by matrix interpolation. In: Workshop on Model Reduction of Parametrized Systems II (MoRePaS II) (2012)

    Google Scholar 

  27. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013)

    Google Scholar 

  28. Gugercin, S., Antoulas, A.C., Beattie, C.: \(\cal{H}_2\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30(2), 609–638 (2008). https://doi.org/10.1137/060666123

    Article  MathSciNet  MATH  Google Scholar 

  29. Gugercin, S., Li, J.R.: Smith-type methods for balanced truncation of large systems. In: Benner, P., Mehrmann, V., Sorensen, D. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 49–82. Springer, Berlin/Heidelberg (2005)

    Google Scholar 

  30. Heinkenschloss, M., Sorensen, D.C., Sun, K.: Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations. SIAM J. Sci. Comput. 30(2), 1038–1063 (2008). https://doi.org/10.1137/070681910

    Article  MathSciNet  MATH  Google Scholar 

  31. Himpe, C.: Comparing (empirical-Gramian-based) model order reduction algorithms (2020). arXiv preprint arXiv:2002.12226 [math.OC]. https://doi.org/10.1007/978-3-030-72983-7_7

  32. Jbilou, K., Messaoudi, A.: A computational method for symmetric Stein matrix equations. In: Van Dooren, P., Bhattacharyya, S.P., Chan, R.H., Olshevsky, V., Routray, A. (eds.) Numerical Linear Algebra in Signals, Systems and Control. Lecture Notes in Electrical Engineering, vol. 80. Springer, New York (2011). https://doi.org/10.1007/978-94-007-0602-6_14

  33. Kleinman, D.L.: On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control 13(1), 114–115 (1968). https://doi.org/10.1109/TAC.1968.1098829

    Article  Google Scholar 

  34. Kürschner, P.: Efficient low-rank solution of large-scale matrix equations. Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany (2016). http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2. Shaker Verlag, ISBN 978-3-8440-4385-3

  35. Lang, N.: Numerical methods for large-scale linear time-varying control systems and related differential matrix equations. Dissertation, Technische Universität Chemnitz, Germany (2017). https://www.logos-verlag.de/cgi-bin/buch/isbn/4700. Logos-Verlag, Berlin, ISBN 978-3-8325-4700-4

  36. Lanzon, A., Feng, Y., Anderson, B.D.O.: An iterative algorithm to solve algebraic Riccati equations with an indefinite quadratic term. In: 2007 European Control Conference (ECC), pp. 3033–3039 (2007). https://doi.org/10.23919/ecc.2007.7068239

  37. Laub, A.J., Heath, M.T., Paige, C.C., Ward, R.C.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32(2), 115–122 (1987). https://doi.org/10.1109/TAC.1987.1104549

    Article  MATH  Google Scholar 

  38. Li, T., Weng, P.C.Y., Chu, E.K.w., Lin, W.W.: Large-scale Stein and Lyapunov equations, Smith method, and applications. Numer. Algorithms 63(4), 727–752 (2013). https://doi.org/10.1007/s11075-012-9650-2

  39. Lin, Y., Simoncini, V.: A new subspace iteration method for the algebraic Riccati equation. Numer. Linear Algebr. Appl. 22(1), 26–47 (2015). https://doi.org/10.1002/nla.1936

    Article  MathSciNet  MATH  Google Scholar 

  40. Mlinarić, P., Rave, S., Saak, J.: Parametric model order reduction using pyMOR (2020). arXiv preprint arXiv:2003.05825 [Cs.MS]. https://doi.org/10.1007/978-3-030-72983-7_17

  41. Möckel, J., Reis, T., Stykel, T.: Linear-quadratic Gaussian balancing for model reduction of differential-algebraic systems. Int. J. Control 84(10), 1627–1643 (2011). https://doi.org/10.1080/00207179.2011.622791

    Article  MathSciNet  MATH  Google Scholar 

  42. Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control AC-26(1), 17–32 (1981). https://doi.org/10.1109/TAC.1981.1102568

  43. MORPACK (model order reduction package). https://tu-dresden.de/ing/maschinenwesen/ifkm/dmt/forschung/projekte/morpack

  44. Mustafa, D., Glover, K.: Controller reduction by \(\cal{H}_\infty \)-balanced truncation. IEEE Trans. Autom. Control 36(6), 668–682 (1991). https://doi.org/10.1109/9.86941

    Article  MathSciNet  Google Scholar 

  45. Oberwolfach Benchmark Collection: Steel profile. hosted at MORwiki – Model Order Reduction Wiki (2005). http://modelreduction.org/index.php/Steel_Profile

  46. Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric model order reduction by matrix interpolation. at-Automatisierungstechnik 58(8), 475–484 (2010)

    Google Scholar 

  47. Penzl, T.: A cyclic low rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 21(4), 1401–1418 (2000). https://doi.org/10.1137/S1064827598347666

    Article  MathSciNet  MATH  Google Scholar 

  48. Penzl, T.: Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst. Control Lett. 40, 139–144 (2000). https://doi.org/10.1016/S0167-6911(00)00010-4

    Article  MathSciNet  MATH  Google Scholar 

  49. Penzl, T.: Lyapack users guide. Technical Report SFB393/00-33, Sonderforschungsbereich 393, Numerische Simulation auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, Germany (2000). Available at http://www.tu-chemnitz.de/sfb393/sfb00pr.html

  50. Poloni, F., Reis, T.: A deflation approach for large-scale Lur’e equations. SIAM J. Matrix Anal. Appl. 33(4), 1339–1368 (2012). https://doi.org/10.1137/120861679

    Article  MathSciNet  MATH  Google Scholar 

  51. Pontes Duff, I., Kürschner, P.: Numerical computation and new output bounds for time-limited balanced truncation of discrete-time systems. Linear Algebra Appl. 623, 367–397. https://doi.org/10.1016/j.laa.2020.09.029 (2019). arXiv preprint arXiv:1902.01652 [math.NA]

  52. Rave, S., Saak, J.: A non-stationary thermal-block benchmark model for parametric model order reduction (2020). arXiv preprint arXiv:2003.00846 [math.NA]. https://doi.org/10.1007/978-3-030-72983-7_16

  53. Reis, T., Stykel, T.: Balanced truncation model reduction of second-order systems. Math. Comput. Model. Dyn. Syst. 14(5), 391–406 (2008). https://doi.org/10.1080/13873950701844170

    Article  MathSciNet  MATH  Google Scholar 

  54. Saak, J.: Efficient numerical solution of large scale algebraic matrix equations in PDE control and model order reduction. Dissertation, Technische Universität Chemnitz, Chemnitz, Germany (2009). http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901642

  55. Saak, J., Köhler, M., Benner, P.: M-M.E.S.S. – the matrix equations sparse solvers library. https://doi.org/10.5281/zenodo.632897. See also: https://www.mpi-magdeburg.mpg.de/projects/mess

  56. Saak, J., Voigt, M.: Model reduction of constrained mechanical systems in M-M.E.S.S. IFAC-PapersOnLine 9th Vienna International Conference on Mathematical Modelling MATHMOD 2018, Vienna, Austria, 21–23 Feb 2018 51(2), 661–666 (2018). https://doi.org/10.1016/j.ifacol.2018.03.112

  57. Schmidt, M.: Systematic discretization of input/output maps and other contributions to the control of distributed parameter systems. Ph.D. Thesis, Technische Universität Berlin, Berlin (2007). https://doi.org/10.14279/depositonce-1600

  58. Shank, S.D., Simoncini, V., Szyld, D.B.: Efficient low-rank solution of generalized Lyapunov equations. Numer. Math. 134, 327–342 (2016). https://doi.org/10.1007/s00211-015-0777-7

    Article  MathSciNet  MATH  Google Scholar 

  59. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29(3), 1268–1288 (2007). https://doi.org/10.1137/06066120X

    Article  MathSciNet  MATH  Google Scholar 

  60. Simoncini, V.: Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 37(4), 1655–1674 (2016). https://doi.org/10.1137/16M1059382

    Article  MathSciNet  MATH  Google Scholar 

  61. Simoncini, V., Druskin, V.: Convergence analysis of projection methods for the numerical solution of large Lyapunov equations. SIAM J. Numer. Anal. 47(2), 828–843 (2009). https://doi.org/10.1137/070699378

    Article  MathSciNet  MATH  Google Scholar 

  62. Simoncini, V., Szyld, D.B., Monsalve, M.: On two numerical methods for the solution of large-scale algebraic Riccati equations. IMA J. Numer. Anal. 34(3), 904–920 (2014). https://doi.org/10.1093/imanum/drt015

    Article  MathSciNet  MATH  Google Scholar 

  63. Stillfjord, T.: Low-rank second-order splitting of large-scale differential Riccati equations. IEEE Trans. Autom. Control 60(10), 2791–2796 (2015). https://doi.org/10.1109/TAC.2015.2398889

    Article  MathSciNet  MATH  Google Scholar 

  64. Stillfjord, T.: Adaptive high-order splitting schemes for large-scale differential Riccati equations. Numer. Algorithms 78, 1129–1151 (2018). https://doi.org/10.1007/s11075-017-0416-8

    Article  MathSciNet  MATH  Google Scholar 

  65. Tombs, M.S., Postlethwaite, I.: Truncated balanced realization of a stable non-minimal state-space system. Int. J. Control 46(4), 1319–1330 (1987). https://doi.org/10.1080/00207178708933971

    Article  MATH  Google Scholar 

  66. Truhar, N., Veselić, K.: An efficient method for estimating the optimal dampers’ viscosity for linear vibrating systems using Lyapunov equation. SIAM J. Matrix Anal. Appl. 31(1), 18–39 (2009). https://doi.org/10.1137/070683052

    Article  MathSciNet  MATH  Google Scholar 

  67. Uddin, M.M.: Computational methods for model reduction of large-scale sparse structured descriptor systems. Dissertation, Department of Mathematics, Otto-von-Guericke University, Magdeburg, Germany (2015). http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-6535

  68. Uddin, M.M.: Computational Methods for Approximation of Large-Scale Dynamical Systems. CRC Press, Boca Raton (2019). https://doi.org/10.1201/9781351028622

  69. Weichelt, H.K.: Numerical aspects of flow stabilization by Riccati feedback. Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany (2016). http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-8693

  70. Yue, Y., Feng, L., Benner, P.: An adaptive pole-matching method for interpolating reduced-order models (2019). arXiv preprint arXiv:1908.00820 [math.NA]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Saak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benner, P., Köhler, M., Saak, J. (2021). Matrix Equations, Sparse Solvers: M-M.E.S.S.-2.0.1—Philosophy, Features, and Application for (Parametric) Model Order Reduction. In: Benner, P., Breiten, T., Faßbender, H., Hinze, M., Stykel, T., Zimmermann, R. (eds) Model Reduction of Complex Dynamical Systems. International Series of Numerical Mathematics, vol 171. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-72983-7_18

Download citation

Publish with us

Policies and ethics