Skip to main content

Prediction of Damage Evolution in Continuous Fiber Metal Matrix Composites Subjected to Fatigue Loading

  • Conference paper
Contemporary Research in Engineering Science

Abstract

A life prediction model is being developed by the authors for application to metal matrix composites (MMC’s). The systems under study are continuous silicon carbide fibers imbedded in titanium matrix. The model utilizes a computationally based framework based on thermodynamics and continuum mechanics, and accounts for matrix inelasticity, damage evolution, and environmental degradation due to oxidation. The computational model utilizes the finite element method, and an evolutionary analysis of a unit cell is accomplished via a time stepping algorithm. The computational scheme accounts for damage growth such as fiber-matrix debonding, surface cracking, and matrix cracking via the inclusion of cohesive zone elements in the unit cell. These elements are located based on experimental evidence also obtained by the authors.

The current paper outlines the formulation utilized by the authors to solve this problem, and recent results are discussed. Specifically, results are given for a four-ply unidirectional composite subjected to cyclic fatigue loading at 650°C both in air and inert gas. The effects of oxidation on the life of the composite are predicted with the model, and the results are compared to limited experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Ashley, Boeing 777 Gets a Boost from Titanium, Mech. Eng., (July 1993), pp. 60–65.

    Google Scholar 

  2. E.V. Zaretsky, Modeling the Future with Metal-Matrix Composites, Mach. Des., (Mar. 7, 1994 ), pp. 124–126.

    Google Scholar 

  3. J.M. Larsen, S.M. Russ, and J.W. Jones, Possibilities and Pitfalls in Aerospace Applications of Titanium Matrix Composites, in the proceedings of the NATO AGARD Conference on Characterization of Fibre Reinforced Titanium Metal Matrix Composites, Bordeaux, France, Sep. 1993.

    Google Scholar 

  4. S.M. Arnold, V.K. Arya, and M.E. Melis, Reduction of Thermal Residual Stresses in Advanced Metallic Composites Based Upon a Compensation/Compliant Layer Concept, J. Compos. Mater., Vol. 26, No. 9 (1992), pp. 1287–1309.

    Article  Google Scholar 

  5. J. Aboudi, Thermoelastic Response of Metal Matrix Composites with Large-Diameter Fibers Subjected to Thermal Gradients, NASA Technical Memorandum 106344 (1993).

    Google Scholar 

  6. I. Doghri, S. Jansson, and F.A. Leckie, Optimization of Coating Layers in the Design of Ceramic Fiber Reinforced Metal Matrix Composites, J. Compos. Mater., Vol. 28, No. 2 (1994), pp. 167–187.

    Article  Google Scholar 

  7. S. Jansson and F. A. Leckie, Reduction of Thermal Stresses in Continuous Fiber Reinforced Metal Matrix Composites with Interface Layers, J. Compos. Mater., Vol. 26, No. 10 (1992), pp. 1474–1486.

    Article  Google Scholar 

  8. M.P. Thomas and J.E. King, Effect of Thermal and Mechanical Processing on Tensile Properties of Powder Formed 2124 Aluminum and 2124 Al-SiCp Metal Matrix Composite, Mater. Sci. Technol., (Sep. 1993), pp. 742–753.

    Google Scholar 

  9. A. Assar and M. Al-Nimr, Fabrication of Metal Matrix Composite by Infiltration Process: Modeling of Hydrodynamic and Thermal Behavior, J. Compos. Mater., Vol. 28, No. 15 (1994), pp. 1480–1490.

    Article  Google Scholar 

  10. G.S. Jeong, D.H. Allen, and D.C. Lagoudas, Residual Stress Evolution Due to Cool Down in Viscoplastic Metal Matrix Composites, Int. J. Solids Struct., Vol. 31, No. 19 (1994), pp. 2653–2677.

    Article  MATH  Google Scholar 

  11. D.B. Marshall, W.L. Morris, B.N. Cox, J. Graves, J.R. Porter, D. Kouris, and R.K. Everett, Transverse Strengths and Failure Mechanisms in Ti3Al Matrix Composites, Acta Metall. Mater., Vol. 42, No. 8 (1994), pp. 2657–2673.

    Article  Google Scholar 

  12. R.H. Dauskardt, R.O. Ritchie, and B.N. Cox, Fatigue of Advanced Materials, Adv. Mater. Processes, (July 1993), pp. 26–31.

    Google Scholar 

  13. J.R. Ellis, M.G. Castelli, T.P. Gabb, and J. Gayda, Isothermal, Nonisothermal, and Thermomechanical Fatigue Damage/Failure Mechanisms in Titanium Matrix Composites, NASP Government Work Package 85d/e, NASA Lewis Research Center, Cleveland, Ohio, Nov. 1–3, 1993.

    Google Scholar 

  14. T.P. Gabb, J. Gayda, P.A. Bartolotta, M.G. Castelli, A Review of Thermomechanical Fatigue Damage Mechanisms in Two Titanium and Titanium Aluminide Matrix Composites, Int. J. Fatigue, (Sep. 1993), pp. 413–422.

    Google Scholar 

  15. G.M. Newaz, B.S. Majumdar, and F.W. Brust, Thermal Cycling Response of Quasi-Isotropic Metal Matrix Composites, J. Eng. Mater. Technol. Trans. ASME, (Apr. 1992), pp. 156–161.

    Google Scholar 

  16. J.G. Bakuckas, W.S. Johnson, and C.A. Bigelow, Fatigue Damage in Cross-Ply Titanium Metal Matrix Composites Containing Center Holes, J. Eng. Mater. Technol. Trans. ASME, Vol. 115 (Oct. 1993), pp. 404–410.

    Article  Google Scholar 

  17. W.S. Johnson, Damage Development in Titanium Metal Matrix Composites Subjected to Cyclic Loading, NASA Technical Memorandum 107597 (1992).

    Google Scholar 

  18. C.R. Saff, D.M. Harmon, and W.S. Johnson, Damage Initiation and Growth in Fiber-Reinforced MMC’s, J. Metals, (Nov. 1988), pp. 58–63.

    Google Scholar 

  19. KS. Kim, A Finite Element Analysis of Crack Bridging in Metal Matrix Composites, J. Compos. Mater., Vol. 28, No. 15 (1994), pp. 1413–1431.

    Article  Google Scholar 

  20. N. Heh and E. Krempl, A Numerical Simulation of the Effects of Volume Fraction, Creep, and Thermal Cycling on the Behavior of Fibrous Metal-Matrix Composites, J. Compos. Mater., Vol. 26, No. 6 (1992), pp. 900–915.

    Article  Google Scholar 

  21. D. Zheng and H. Ghonem, High Temperature/High Frequency Bridging Fatigue Crack Growth Damage Mechanisms in Titanium Metal Matrix Composites, submitted to the J. Compos. Mater., (1994).

    Google Scholar 

  22. M.N. Tamin, D. Zheng, and H. Ghonem, Evolution of Bridging Fiber Stress in Titanium Metal Matrix Composites at Elevated Temperature, in the proceedings of ASTM 3rd Symposium on Advances in Fatigue Lifetime Predictive Techniques, Montreal, Quebec, Canada, May 16–17, 1994.

    Google Scholar 

  23. I.W. Hall, J.L. Lirn, and Y. Lepetitcorps, Microstructural Analysis of Isothermally Exposed Ti/SiC Metal Matrix Composites, J. Mater. Sci., (July 15, 1992 ), pp. 3835–3842.

    Google Scholar 

  24. S. Aksoy, Stiffness Degradation in Metal Matrix Composites Caused by Thermomechanical Fatigue Loading, J. Eng. Gas Turbines Power Trans. ASME, Vol. 116 (July 1994), pp. 616–621.

    Article  Google Scholar 

  25. P.K. Gotsis, Combined Thermal and Bending Fatigue of High- Temperature Metal-Matrix Composites, NASA Technical Memorandum 104354 (1991).

    Google Scholar 

  26. J. Aboudi, M.-J. Pindera, and S.M. Arnold, Elastic Response of Metal Matrix Composites with Tailored Microstructures to Thermal Gradients, Int. J. Solids Struct., Vol. 31, No. 10 (1994), pp. 1393–1428.

    Article  MATH  Google Scholar 

  27. M.-J. Pindera, A.D. Freed, and S.M. Arnold, Effects of Fiber and Interfacial Layer Morphologies on the Thermoplastic Response of Metal Matrix Composites, Int. J. Solids Struct., Vol. 30, No. 9 (1993), pp. 1213–1238.

    Article  Google Scholar 

  28. Z.Z. Du and R.M. McMeeking, Creep Models for Metal Matrix Composites with Long Brittle Fibers, submitted to J. Mech. Physics Solids, (1994).

    Google Scholar 

  29. Z.Z. Du, R.M. McMeeking, and S. Schmauder, Transverse Yielding and Matrix Flow Past the Fibers in Metal Matrix Composites, submitted to Mech. Mater., (1994).

    Google Scholar 

  30. T.E. Wilt, A Coupled/Uncoupled Deformation and Fatigue Damage Algorithm Utilizing the Finite Element Method, NASA Technical Memorandum 106526 (1994).

    Google Scholar 

  31. S.M. Arnold, A Differential CDM Model for Fatigue of Unidirectional Metal Matrix Composites, NASA Technical Memorandum 105726 (1992).

    Google Scholar 

  32. S.M. Arnold, Differential Continuum Damage Mechanics Models for Creep and Fatigue of Unidirectional Metal Matrix Composites, NASA Technical Memorandum 105213 (1991).

    Google Scholar 

  33. D.C. Lagoudas, X. Ma, D.A. Miller, and D.H. Allen, Modelling of Oxidation in Metal Matrix Composites, accepted for publication in Int. J. Eng. Sci., (1995).

    Google Scholar 

  34. S. Xu, D.C. Lagoudas, and D.H. Allen, Impact of Surface Oxidation on Damage Evolution in Metal Matrix Composites, to appear in the proceedings of the ASME Winter Annual Meeting, 1995.

    Google Scholar 

  35. D.C. Lagoudas, D.H. Allen, and X. Ma, Modeling of Surface Oxidation and Oxidation Induced Damage in Metal Matrix Composites, Computational Material Modeling, AD-Vol.42, PVP-Vol.294, A. K. Noor and A. Needleman, Eds., American Society of Mechanical Engineers, New York (1994), pp. 245–264.

    Google Scholar 

  36. F.W. Zok, S.J. Connell,and Z.Z. Du, Fatigue Maps for Titanium Matrix Composites, to be published in ASTM Special Technical Publication on Life Prediction Methodology for Titanium Matrix Composites (Mar. 1994).

    Google Scholar 

  37. M.N. Tamin, D. Zheng, and H. Ghonem, Time-Dependent Behavior of Continuous-Fiber-Reinforced Metal Matrix Composites: Modelling and Applications, submitted to J. Compos. Technol. Res., (Feb. 1994).

    Google Scholar 

  38. D.H. Allen, R.H. Jones, and J.G. Boyd, Micromechanical Analysis of a Continuous Fiber Metal Matrix Composite Including the Effects of Matrix Viscoplasticity and Evolving Damage, J. Mech. Physics Solids, Vol. 42, No. 3 (1994), pp. 502–529.

    Article  Google Scholar 

  39. G.R. Halford, Proposed Framework for Thermomechanical Life Modeling of Metal Matrix Composites, NASA Technical Paper 3320 (1993).

    Google Scholar 

  40. R.W. Neu, A Mechanistic-Based Thermomechanical Fatigue Life Prediction Model for Metal Matrix Composites, Fatigue Fract. Eng. Mater. Struct., Vol. 16, No. 8 (1993), pp. 811–828.

    Article  Google Scholar 

  41. J.L. Kroupa, R.W. Neu, T. Nicholas, D. Coker, D.D. Robertson, and S. Mall, A Comparison of Analysis Tools for Predicting the Inelastic Cyclic Response of Cross-Ply Titanium Matrix Composites, in the proceedings of the ASTM Symposium on Life Prediction Methodology for Titanium Matrix Composites, Hilton Head, South Carolina, Mar. 22–24, 1994.

    Google Scholar 

  42. T. Nicholas, J. Zuiker, and J. Pernot, Characterization of Titanium Matrix Composites, NASP Technical Memorandum 1199, Vol. I (Apr. 1995).

    Google Scholar 

  43. M.R. Eggleston and E. Krempl, The Transverse Creep and Tensile Behaviour of SCS-6/Ti-6Al-4V Metal Matrix Composites at 482°C, Mech. Compos. Mater. Struct., Vol. 1 (1994), pp. 53–73.

    Google Scholar 

  44. W.O. Soboyejo, Investigation of the Effects of Matrix Microstructure and Interfacial Properties on the Fatigue and Fracture Behavior of a Ti-15V-3Cr- 3Al-3Sn/SCS9 Composite, Mater. Sci. Eng., A 183 (1994), pp. 49–58.

    Article  Google Scholar 

  45. R.A. Naik, W.D. Pollock, and W.S. Johnson, Effect of a High-Temperature Cycle on the Mechanical Properties of Silicon Carbide/Titanium Metal Matrix Composites, J. Mater. Sci., (June 1, 1991 ), pp. 2913–2920.

    Article  Google Scholar 

  46. W.C. Revelos and P.R. Smith, Effect of Environment on the Thermal Fatigue Response of an SCS-6/Ti-24Al-llNb Composite, Metall. Trans., (Feb. 1993), pp. 587–595.

    Google Scholar 

  47. R.W. Schutz, Environmental Behavior of Beta Titanium Alloys, J. Mech., (July 1994), pp. 24–29.

    Google Scholar 

  48. J.V. Tesha, D.J. Stephenson, and P. Hancock, A New Criterion for Determining the Failure of Ti/SiC Metal-Matrix Composites, J. Mater. Sci., (Nov. 15, 1994 ), pp. 5787–5793.

    Article  Google Scholar 

  49. J.J. Pernot, S. Mall, and T. Nicholas, Crack Growth Rate Behavior of a Titanium-Aluminde Alloy during Isothermal and Nonisothermal Conditions, J. Eng. Mater. Technol. Trans. ASME, (Jan. 1995), pp. 118–126.

    Google Scholar 

  50. D. Kouris and D. Marshall, Damage Mechanisms in Ti3Al Matrix Composites, J. Eng. Mater. Technol. Trans. ASME, (July 1994), pp. 319–324.

    Google Scholar 

  51. S.J. Connell, F.W. Zok, Z.Z. Du, and Z. Suo, On the Tensile Properties of a Fiber Reinforced Titanium Matrix Composite — II. Influence of Notches and Holes, submitted to Acta Metall. Mater., (1994).

    Google Scholar 

  52. T.B. Nguyen, S.M. Jeng, and J.M. Yang, The Effect of Fiber Orientation on Fatigue Crack Propagation in SCS-6/Ti-15-3 Composites, Mater. Sci. Eng., A183 (1994), pp. 1–9.

    Article  Google Scholar 

  53. B.S. Majumdar and G.M. Newaz, Inelastic Deformation of MMC’s: Thermo-Mechanical Fatigue (TMF), HITEMP Review 1993, NASA Conference Publication 19117, (1993).

    Google Scholar 

  54. G.M. Newaz and B.S. Majumdar, Inelastic Deformation Mechanisms in SCS-6/Ti-15-3 MMC Lamina Under Compression, NASA Contractor Report 191170, (Sep. 1993).

    Google Scholar 

  55. N. Bonora, M. Constanzi, G. Newaz, and M. Marchetti, Microdamage Effects on the Overall Response of Long Fibre/Metal-Matrix Composites, Composites, Vol. 25, No. 7 (1994), pp. 575–582.

    Article  Google Scholar 

  56. S. Mall, and B. Portner, Characterization of Fatigue Behavior in Cross- Ply Laminate SCS-6/Ti-15-3 Metal Matrix Composite at Elevated Temperature, J. Eng. Mater. Technol. Trans. ASME, (Oct. 1992), pp. 409–415.

    Google Scholar 

  57. S. Mall and P.G. Ermer, Thermal Fatigue Behavior of Unidirectional SCS-6/Ti-15-3 Metal Matrix Composite, J. Compos. Mater., Vol. 25 (Dec. 1991), pp. 1668–1686.

    Google Scholar 

  58. K.A. Hart and S. Mall, Thermomechanical Fatigue Behavior of a Quasi-Isotropie SCS6-Ti-15-3 Metal Matrix Composite, J. Eng. Mater. Technol. Trans. ASME, (Jan. 1995), pp. 109–117.

    Google Scholar 

  59. L.A. Wittig and D.H. Allen, Modeling the Effect of Oxidation on Damage in SiC/Ti-15-3 Metal Matrix Composites, J. Eng. Mater. Technol. Trans. ASME, Vol. 116 (July 1994), pp. 421–427.

    Article  Google Scholar 

  60. L.D. Hurtado and D.H. Allen, Effect of Oxidation on Damage Evolution in Titanium Matrix MMC’s, in the proceedings of the Symposium on Inelasticity and Micromechanics in Metal Matrix Composites, Twelfth U.S. National Congress of Applied Mechanics, Seattle, June 26–July 1, 1994.

    Google Scholar 

  61. Timetal 21S Data Sheet, TIMET, Denver, May 1993.

    Google Scholar 

  62. J.C. Fanning, Timetal 21S Property Data, unpublished TIMET Henderson Technical Lab Report, (1993).

    Google Scholar 

  63. R.W. Neu, Nonisothermal Material Parameters for the Bodner-Partom Model, in the proceedings of the ASME Winter Annual Meeting, New Orleans, November 28 - December 3, 1993.

    Google Scholar 

  64. B. Bavarian, V. Wahi, G. Canzona, and M. Zamanzadeh, in the proceedings of the AEROMAT 93: Advanced Aerospace Materials/Process Conference, 1993.

    Google Scholar 

  65. B. Bavarian, G. Canzona, and M. Zamanzadeh, in the proceedings of the CORROSION 93: NACE Annual Conference and Corrosion Show, 1993, pp.243/1–243/9.

    Google Scholar 

  66. B. Bavarian and M. Zamanzadeh, in the proceedings of the CORROSION 93: NACE Annual Conference and Corrosion Show, 1993, pp.284/1–284/10.

    Google Scholar 

  67. J.S. Grauman, Corrosion Behavior of TIMETAL®21S for Non-Aerospace Applications, in the proceedings of the 7th World Conference on Titanium, San Diego, June 1992.

    Google Scholar 

  68. J.S. Grauman and E.E. Mild, in the proceedings of the OMAE Conference, Edmonton, June 1992.

    Google Scholar 

  69. W.M. Parris and P.J. Bania, Oxygen Effects on the Mechanical Properties of TIMETAL®21S, in the proceedings of the 7th World Conference on Titanium, San Diego, June 1992.

    Google Scholar 

  70. T.A. Wallace, K.E. Wiedemann, and R.K. Clark, Oxidation Characteristics of Beta-21S in Air in the Temperature Range 600 to 800°C, NASA Technical Memorandum 104217, (1992).

    Google Scholar 

  71. P.S. Liu, K.H. Hou, W.A. Baeslack, and J. Hurley, Laser Welding of an Oxidation Resistant, Metastable-Beta Titanium Alloy-ß-21S, in the proceedings of the 7th World Conference on Titanium, San Diego, June 1992.

    Google Scholar 

  72. R.R. Cervay, SCS-6 /ß21S and SCS-9/ß21S Mechanical Property Evaluation, NASP Contractor Report 1165, (Apr. 1994).

    Google Scholar 

  73. R.R. Cervay, σ/ß21S Physical and Mechanical Property Evaluation, NASP Contractor Report 1169, (Sep. 1994).

    Google Scholar 

  74. P.J. Bania and W.M. Parris, Cß-21S: A High Temperature Metastable Beta Titanium Alloy, in the proceedings of the Titanium 90 - Products and Applications Conference, Titanium Development Association, Dayton, Ohio, 1990.

    Google Scholar 

  75. R.W. Neu and T. Nicholas, Thermomechanical Fatigue of SCS-6/Timetal 2 IS Under Out-of-Phase Loading, in the proceedings of the 1993 ASME Winter Annual Meeting, New Orleans, November 28 - December 3, 1993.

    Google Scholar 

  76. H. Ghonem, Y. Wen, and D. Zheng, An Interactive Simulation Technique to Determine the Internal Stress States in Fiber Reinforced Metal Matrix Composites, Mater. Sci. Eng., A177 (1994), pp. 125–134.

    Article  Google Scholar 

  77. H. Ghonem, Y. Wen, and D. Zheng, Effects of Temperature and Frequency on Fatigue Crack Growth in Ti-ß21S Monolithic Laminate, Mater. Sci. Eng., A161 (1993), pp. 45–53.

    Article  Google Scholar 

  78. M.G. Castelli, Isothermal Damage and Fatigue Behavior of SCS- 6/Timetal 21S [0/90] s Composite at 650°C, NASA Contractor Report 195345, (June 1994).

    Google Scholar 

  79. M.G. Castelli, Thermomechanical Fatigue Damage/Failure Mechanisms in SCS-6/Timetal 21S [0/90]s Composite, submitted to Compos. Eng., (1994).

    Google Scholar 

  80. M.G. Castelli, An Advanced Test Technique to Quantify Thermomechanical Fatigue Damage Accumulation in Composite Materials, J. Compos. Technol. Res., (Oct. 1994).

    Google Scholar 

  81. R.W. Neu and I. Roman, Acoustic Emission Monitoring Damage in Metal-Matrix Composites Subjected to Thermomechanical Fatigue, Compos. Sci. Technol., Vol. 52 (1994), pp. 1–8.

    Google Scholar 

  82. D. Coker, N.E. Ashbaugh, and T. Nicholas, Analysis of the Thermomechanical Behavior of [0] and [0/90] SCS-6/Timetal®21S Composites, in the proceedings of the ASME Winter Annual Meeting, 1993.

    Google Scholar 

  83. R.W. Neu, and T. Nicholas, Effect of Laminate Orientation on the Thermomechanical Fatigue Behavior of a Titanium Matrix Composite, J. Compos. Technol. Res., (July 1994), pp. 214–224.

    Google Scholar 

  84. G. Newaz, Evaluation and Modeling of Mechanical Response and Strength of MMC in Compression, unpublished report, (1994).

    Google Scholar 

  85. R.W. Neu, D. Coker, and T. Nicholas, Cyclic Behavior of Unidirectional and Cross-Ply Titanium Matrix Composites, submitted to Int. J. Plast., (1994).

    Google Scholar 

  86. T. Nicholas and S.M. Buss, Response of a [0/90] SCS-6/Timetal 21S Composite to Isothermal and Thermomechanical Fatigue, in the proceedings of the Structural Testing Technology at High Temperature - II, the Society for Experimental Mechanics, November 1993, pp. 155–164.

    Google Scholar 

  87. S. Mall, D.G. Hanson, T. Nicholas, and S.M. Russ, Thermomechanical Fatigue Behavior of a Cross-Ply SCS-6/ß21-S Metal Matrix Composite, in the proceedings of the ASME Winter Annual Meeting, 1992.

    Google Scholar 

  88. D. Coker, R.W. Neu, and T. Nicholas, Analysis of the Thermoviscoplastic Behavior of [0/90] SCS-6/Timetal®21S Composites, in the proceedings of the Second Symposium on Thermomechanical Fatigue Behavior of Materials ASTM, Phoenix, November 14–15, 1994.

    Google Scholar 

  89. R.W. Neu, Thermomechanical Fatigue Damage Mechanism Maps for Metal Matrix Composites, Thermo-Mechanical Fatigue Behavior of Materials: 2nd Volume, ASTM STP 1263, M. J. Verrilli and M. G. Castelli, Eds., American Society for Testing and Materials, Philadelphia, (1995).

    Google Scholar 

  90. D.H. Allen, A Review of the Theory of Thermomechanical Coupling in Inelastic Solids, Appl. Mech. Rev., American Society of Mechanical Engineers, Vol. 44, No. 8 (1991), pp. 361–373.

    Article  Google Scholar 

  91. KS. Chan, S.R. Bodner, and U.S. Lindholm, Phenomenolgical Modeling of Hardening and Thermal Recovery in Metals, J. Eng. Mater. Technol. Trans. ASME, (Jan. 1988), pp. 1–8.

    Google Scholar 

  92. L.A. Wittig, A Micromechanical Model of Oxidation Effects in SiC/Ti Metal Matrix Composites, Master’s Thesis, Texas A and M University, College Station, Texas, (1993).

    Google Scholar 

  93. A. Needleman, A Continuum Model for Void Nucleation by Inclusion Debonding, J. Appl. Mech. Trans. ASME, Vol. 54 (1987), pp. 525–531.

    Article  MATH  Google Scholar 

  94. V. Tvergaard, Micromechanical Modeling of Fibre Debonding in a Metal Reinforced by Short Fibres, in the proceedings of the IUTAM Symposium on Inelastic Deformation of Composite Materials, G. J. Dvorak, Ed., Springer-Verlag, 1990, pp. 99–111.

    Google Scholar 

  95. V. Tvergaard and J.W. Hutchinson, The Influence of Plasticity on Mixed Mode Interface Toughness, J. Mech. Physics Solids, Vol. 41, No. 6 (1993), pp. 1119–1135.

    Article  MATH  Google Scholar 

  96. D.H. Allen, M.R. Eggleston, and L.D. Hurtado, Recent Research on Damage Development in SiC/Ti Continuous Fiber Metal Matrix Composites, to appear in Fracture of Composites, E. A. Armanios, Ed., in Key Engineering Materials, Trans Tech Publications, (1995).

    Google Scholar 

  97. D.C. Lo and D.H. Allen, Modeling of Delamination Damage Evolution in Laminated Composites Subjected to Low Velocity Impact, Int. J. Damage Mech., Vol. 3, No. 4 (Oct. 1994), pp. 378–407.

    Article  Google Scholar 

  98. F. Costanzo and D.H. Allen, D. H., A Continuum Mechanics Approach to Some Problems in Subcritical Crack Propagation, Int. J. Fract., Vol. 63, No. 1 (1993), pp. 27–57.

    Article  Google Scholar 

  99. F. Costanzo and D.H. Allen, A Continuum Thermodynamics Analysis of Cohesive Zone Models, accepted for publication in the Int. J. Eng. Sci., (1995).

    Google Scholar 

  100. D.A. Miller, Damage Evolution of a SiC/Ti-15-3 Metal Matrix Composite with Different Heat Treatments, Master’s Thesis, Texas Aamp;M University, College Station, Texas, (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allen, D., Helms, K., Hurtado, L., Lagoudas, D. (1995). Prediction of Damage Evolution in Continuous Fiber Metal Matrix Composites Subjected to Fatigue Loading. In: Batra, R.C. (eds) Contemporary Research in Engineering Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80001-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80001-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80003-0

  • Online ISBN: 978-3-642-80001-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics