Skip to main content
Log in

A continuum mechanics approach to some problems in subcritical crack propagation

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The results of the so-called energetic approach to fracture for the cases of a sharp crack without and with a cohesive zone are briefly reviewed with particular attention to the crack tip singularity analysis and to the issue of energy dissipation due to crack propagation. The case of a crack with a cohesive zone removing all thermomechanical singularities is then further analyzed, focusing the attention on the question of the thermodynamic admissibility of subcritical crack growth, and on some of the hypotheses that lead to the derivation of subcritical crack growth laws. A two-phase cohesive zone model for discontinuous crack growth is presented and its thermodynamics analyzed, followed by an example of its possible application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C. Paris, in Fatigue Thresholds, J. Backlund, A.F. Blom and C.J. Beevers (eds.), Chamelem, London, 1 (1982) 3–10.

  2. P.C. Paris, The Growth of Cracks Due to the Variations in Loads, Ph.D. thesis, Lehigh University, Bethlehem, Pa. (1962).

  3. P.C. Paris and F. Erdogan, Journal of Basic Engineering 85 (1963) 528–534.

    Google Scholar 

  4. N.E. Frost and J.R. Dixon, International Journal of Fracture Mechanics 3 (1967) 301–306.

    Google Scholar 

  5. F.A. McClintock, in Fracture of Solids, John Wiley & Sons (1963) 65–102.

  6. J.R. Rice, in Fatigue Crack Propagation, ASTM STP 415 (1967) 247–309.

  7. J. Weertman, in Fatigue and Microstructure, American Society of Metals, Metals Park, Ohio (1979) 279–306.

    Google Scholar 

  8. R.W. Hertzberg, Deformation and Fracture Mechanics of Enginnering Materials, John Wiley & Sons (1976).

  9. M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford University Press (1985).

  10. E.H. Andrews, Fracture In Polymers, Aberdeen University Press (1968).

  11. R.W. Herzberg and J.A. Mason, Fatigue of Engineering Plastics, Academic Press (1980).

  12. J.G. Williams, Fracture Mechanics of Polymers, Ellis Horwood Lim. (1987).

  13. A.J. Kinloch and R.J. Young, Fracture Behavior of Polymers, Elsevier Applied Science (1983).

  14. K. Masaki, in Superalloy, Supercomposites and Superceramics, J.K. Tien and T. Canlfield (eds.), Academic Press (1989) 413–437.

  15. G.P. Cherepanov, International Journal of Solids and Structures 4 (1968) 811–831.

    Google Scholar 

  16. Y. Izumi, M.E. Fine and T. Mura, International Journal of Fracture 17 (1981) 15–25.

    Google Scholar 

  17. A. Chudnovsky, V. Dunaevsky and V. Khandogin, Archives of Mechanics 30 (1978) 165–174.

    Google Scholar 

  18. A. Chudnovsky, Crack Layer Theory, NASA CR-174634 (1984).

  19. J.S. Short and D.W. Hoeppner, Engineering Fracture Mechanics 33 (1989) 175–184.

    Google Scholar 

  20. A.A. Griffith, Philosophical Transaction of The Royal Society of London, A221 (1921) 163–197.

    Google Scholar 

  21. G.P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill (1979).

  22. J.R. Rice, in Fracture, 2, Academic Press (1968) 191–311.

  23. J.R. Rice, Journal of Mechanics and Physics of Solids 26 (1978) 61–78.

    Google Scholar 

  24. M.E. Gurtin, Journal of Elasticity 9 (1979) 187–195.

    Google Scholar 

  25. M.E. Gurtin, International Journal of Solids and Structures 15 (1979) 553–560.

    Google Scholar 

  26. M.E. Gurtin, Zeitschirift für Angewandte Mathematik und Physik (ZAMP) 30 (1979) 991–1003.

    Google Scholar 

  27. Q.S. Nguyen, in Variational Methods in the Mechanics of Solids, IUTAM Symposium, Evanston, Pergamon Press (1980) 254–259.

  28. Q.S. Nguyen, Journal de Mécanique 19 (1980) 363–386.

    Google Scholar 

  29. Q.S. Nguyen, in Three-Dimensional Constitutive Relations and Ductile Fracture, IUTAM Symposium, Dourdan, North-Holland (1980) 315–330.

  30. Q.S. Nguyen, Journal de Mécanique Théorique Appliqué 3 (1984) 41–61.

    Google Scholar 

  31. Q.S. Nguyen, Comptes Rendus De l'Académie Des Sciences, Série II 300, Paris (1985) 191–194.

  32. Q.S. Nguyen, Comptes Rendus De l'Académie Des Sciences, Série II 301, Paris (1985) 567–570.

  33. B.D. Coleman and M.E. Gurtin, The Journal of Chemical Physics 17 (1967) 597–613.

    Google Scholar 

  34. P. Germain, Q.S. Nguyen and P. Suquet, Journal of Applied Mechanics 50 (1983) 1010–1020.

    Google Scholar 

  35. J.R. Rice, in Proceedings of the First International Conference on Fracture, Japanese Society of Strength and Fracture of Materials, Tokyo (1966) 309–340.

  36. A.P. Kfouri and J.R. Rice, in Fracture 1977, 1, ICF4, Waterloo, Canada (1977) 43–59.

  37. L.E. Malvern, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall Series in Engineering of The Physical Science (1969).

  38. C. Trusdell and R.A. Toupin, in Handbuch Der Physik, III-1, Springer-Verlag (1960) 226–793.

  39. M.F. McCarthy, in Continuum Physics, II, E.C. Eringen (ed.), Academic Press (1975) 449–521.

  40. Q.S. Nguyen and C. Stolz, Comptes Rendus De L'Académie Des Sciences, Série II 301, Paris (1985) 661–664.

  41. J-C Michel and Q.S. Nguyen, Comptes Rendus De L'Académie Des Sciences, Série II 304, Paris (1987) 1029–1032.

  42. H.D. Bui, A. Ehrlacher and Q.S. Nguyen, Comptes Rendus De L'Académie Des Sciences, Série II 289, Paris (1979) 221–215.

  43. J.C. Sung and J.D. Achenbach, Journal of Thermal Stresses 10 (1987) 243–262.

    Google Scholar 

  44. E. Stenberg, Loss of Ellipticity in The Small Scale Nonlinear Mode III Problem: Pilot Example, Ecoles E.D.F.-C.E.A.-I.N.R.I.A., Paris (1983).

  45. A.P. Kfouri, International Journal of Fracture 15 (1979) 23–29.

    Google Scholar 

  46. D.S. Dugdale, Journal of the Mechanics and Physics of Solids 8 (1960) 100–104.

    Google Scholar 

  47. G.I. Barenblatt, Advances in Applied Mechanics 7 (1962) 55–129.

    Google Scholar 

  48. A.S. Krausz and H. Eyring, Deformation Kinetics, John Wiley & Sons (1975).

  49. M.B. Bever, D.L. Holt and A.L. Titchener, The Stored Energy of Cold Work, Progress in Material Science, 17, B. Chalmers, J.W. Christian and T.B. Massalski (eds.), Pergamon Press (1973).

  50. H.E. Exner and E. Arzt, in Physical Metallurgy, R.W. Cahn and P. Haasen (eds.), Elsevier Science Publishers (1983) 1885–1912.

  51. M.E. Gurtin and A. Struthers, Archive for Rational Mechanics and Analysis 112 (1990) 97–160.

    Google Scholar 

  52. B.D. Colemann and W. Noll, Archive for Rational Mechanics and Analysis 13 (1963) 167–178.

    Google Scholar 

  53. T. Fett and D. Munz, Journal of the American Ceramic Society 75 (1992) 958–963.

    Google Scholar 

  54. K. Jakus, J.E. Ritter and R.H. Schwillinski, Journal of the American Ceramic Society 76 (1993) 33–38.

    Google Scholar 

  55. J.R. Rice, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  56. J. Botsis, A. Chudnovsky and A. Moet, International Journal of Fracture 33 (1987) 263–276.

    Google Scholar 

  57. J. Botsis, A. Chudnovsky and A. Moet, International Journal of Fracture 33 (1987) 277–284.

    Google Scholar 

  58. N. Verheulpen-Heymans and J.C. Bauwens, Journal of Materials Science 11 (1976) 1–6.

    Google Scholar 

  59. N. Verheulpen-Heymans and J.C. Bauwens, Journal of Materials Science 11 (1976) 7–16.

    Google Scholar 

  60. B.D. Lauterwasser and E.J. Kramer, Philosophical Magazine, A 39 (1979) 469–495.

    Google Scholar 

  61. R. Schirrer, J. LeMasson, B. Tomatis and R. Lang, Polymer Engineering and Science 24 (1984) 820–824.

    Google Scholar 

  62. E.J. Kramer, Polymer Engineering and Science 24 (1984) 761–769.

    Google Scholar 

  63. S.S. Chern and C.C. Hiao, Journal of Applied Physics 53 (1982) 6541–6551.

    Google Scholar 

  64. B. Budiansky and J.W. Hutchinson, Journal of Applied Mechanics 45 (1978) 267–276.

    Google Scholar 

  65. R.W. Hertzberg, M.D. Skibo and J.A. Manson, in Fatigue Mechanisms, ASTM STP 675, (1979) 471–500.

  66. K. Kadota and A. Chudnovsky, in Recent Advances in Damage Mechanics and Plasticity, AMD-Vol. 132/Md-Vol. 30, J.W. Ju (ed.), ASME (1992) 115–130.

  67. J. Kim and R.E. Robertson, Journal of Material Science 27 (1992) 3000–3009.

    Google Scholar 

  68. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, The Netherlands (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costanzo, F., Allen, D.H. A continuum mechanics approach to some problems in subcritical crack propagation. Int J Fract 63, 27–57 (1993). https://doi.org/10.1007/BF00053315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053315

Keywords

Navigation