Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 107))

Abstract

In recent years, it has become increasingly obvious that the cellular events involved in bone remodeling are likely modulated by a group of local factors. These local factors, or osteotropic cytokines, have extremely potent effects on bone cells in both in vitro and in vivo systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe E, Tanaka H, Ishimi Y, Chisato M, Hayashi T, Nagasawa H, Tomida M, Yamaguchi Y, Hozumi M, Suda T (1986) Differentiation-inducing factor purified from conditioned medium of mitogen–treated spleen cell cultures stimulates bone resorption. Proc Natl Acad Sci USA 83:5958–5962

    Article  PubMed  CAS  Google Scholar 

  • Abe E, Ishimi Y, Takahashi N, Akatsu T, Ozawa H, Yamana H, Yoshiki S, Suda T (1988) A differentiation–inducing factor produced by the osteoblastic cell line MC3T3-E1 stimulates bone resorption by promoting osteoclast formation. J Bone Miner Res 3:635–645

    Article  PubMed  CAS  Google Scholar 

  • Akatsu T, Takahashi N, Debari K, Morita I, Murota S, Nagata N, Takatani O, Suda T (1989) Prostaglandins promote osteoclast like cell formation by a mechanism involving cyclic adenosine 3’,5’-monophosphate in mouse bone marrow cell cultures. J Bone Miner Res 4:29–35

    Article  PubMed  CAS  Google Scholar 

  • Akira S, Hirano T, Taga T, Kishimoto T (1990) Biology of multifunctional cytokines: IL-6 and related molecules (IL-1 and TNF). FASEB J 4:2860–2867

    PubMed  CAS  Google Scholar 

  • Arend WP, Joslin FG, Thompson RC, Hannum CH (1989) An IL-1 inhibitor from human monocytes. Production and characterization of biologic properties. J Immunol 15:1851–1858

    Google Scholar 

  • Bataille R, Jourdan M, Zhang XG, Klein B (1989) Serum levels of interleukin-6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J Clin Invest 84:2008–2011

    Article  PubMed  CAS  Google Scholar 

  • Benjamin WR, Tare NS, Hayes TJ, Becker JM, Anderson TD (1989) Regulation of hemopoiesis in myelosuppressed mice by human recombinant IL-1 alpha. J Immunol 142:792–799

    PubMed  CAS  Google Scholar 

  • Bennett A, McDonald AM, Simpson JS, Stanford IF (1975) Breast cancer, prostaglandins, and bone metastases. Lancet i: 1218–1220

    Article  Google Scholar 

  • Bertolini DR, Nedwin GE, Bringman TS, Mundy GR (1986) Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factor. Nature 319:516–518

    Article  PubMed  CAS  Google Scholar 

  • Black K, Mundy GR, Garrett IR (1990) Interleukin-6 causes hypercalcemia in vivo, and enhances the bone resorbing potency of interleukin-1 and tumor necrosis factor by two orders of magnitude in vitro. J Bone Miner Res 5 [Suppl 2]:787

    Google Scholar 

  • Black K, Garrett IR, Mundy GR (1991) Chinese hamster ovarian cells transfected with the murine interleukin-6 gene cause hypercalcemia as well as cachexia, leukocytosis and thrombocytosis in tumor-bearing nude mice. Endocrinology 128:2657–2659

    Article  PubMed  CAS  Google Scholar 

  • Boyce BR, Aufdemorte TB, Garrett IR, Yates AJP, Mundy GR (1989a) Effects of interleukin-1 on bone turnover in normal mice. Endocrinology 125:1142–1150

    Article  PubMed  CAS  Google Scholar 

  • Boyce BR, Yates AJP, Mundy GR (1989b) Bolus injections of recombinant human interleukin-1 cause transient hypocalcemia in normal mice. Endocrinology 125:2780–2783

    Article  PubMed  CAS  Google Scholar 

  • Canalis E (1986) Interleukin-1 has independent effects on deoxyribonucleic acid and collagen synthesis in cultures of rat calvariae. Endocrinology 118:74–81

    Article  PubMed  CAS  Google Scholar 

  • Canalis E, McCarthy T, Centrella M (1987a) A bone-derived growth factor isolated from rat calvariae is beta 2 microglobulin. Endocrinology 121:1198–1200

    Article  PubMed  CAS  Google Scholar 

  • Canalis E, Lorenzo J, Burgess WH, Maciag T (1987b) Effects of endothelial cell growth factor on bone remodeling in vitro. J Clin Invest 79:52–58

    Article  PubMed  CAS  Google Scholar 

  • Canalis E, Centrella M, McCarthy T (1988) Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest 81:1572–1577

    Article  PubMed  CAS  Google Scholar 

  • Canalis E, Centrella M, Burch W, McCarthy TL (1989a) Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J Clin Invest 83:60–65

    Article  PubMed  CAS  Google Scholar 

  • Canalis E, McCarthy T, Centrella M (1989b) Growth factors and the regulation of bone remodeling. J Clin Invest 81:277–281

    Article  Google Scholar 

  • Carter DB, Deibel MR Jr, Dunn CJ, Tomich CSC, Laborde AL, Slightom JL, Berger AE, Bienkowski MJ, Sun FF, McEwan RN, Harris PKW, Yem AW, Waszak GA, Ghosay JG, Sieu LC, Hardee MM, Zurcher-Neely HA, Reardon IM, Heinrikson RL, Truesdell SE, Shelly JA, Eessalu TE, Taylor BM, Tracey DE (1990) Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature 344:633–638

    Article  PubMed  CAS  Google Scholar 

  • Centrella M, Canalis E (1985) Local regulators of skeletal growth: a perspective. Endocr Rev 6:544–551

    Article  PubMed  CAS  Google Scholar 

  • Centrella M, McCarthy TL, Canalis E (1989) Beta-2-microglobulin enhances insulin- like growth factor I receptor levels and synthesis. J Biol Chem 264:18268–18271

    PubMed  CAS  Google Scholar 

  • Chambers TJ, Ali NN (1983) Inhibition of osteoclastic motility by prostaglandins 12, El, E2 and 6-oxoEl. J Pathol 139:383–397

    Article  PubMed  CAS  Google Scholar 

  • Chenu C, Kukita T, Mundy GR, Roodman GD (1990) Prostaglandins E2 inhibits formation of osteoclast-like cells in long–term human marrow cultures but is not a mediator of the inhibitory effects of transforming growth factor ß. J Bone Miner Res 5:677–681

    Article  PubMed  CAS  Google Scholar 

  • Chyun YS, Raisz LG (1984) Stimulation of bone formation by prostaglandin E2. Prostaglandins 27:97–103

    Article  PubMed  CAS  Google Scholar 

  • Cozzolino F, Torcia M, Aldinucci D, Rubartelli A, Miliani A, Shaw AR, Lansdorp PM, Diguglielmo R (1989) Production of interleukin-1 by bone marrow myeloma cells. Blood 74:387–390

    Google Scholar 

  • Davidson EM, Rae SA, Smith MJ (1983) Leukotriene B4, a mediator of inflammation present in synovial fluid in rheumatoid arthritis. Ann Rheum Dis 42:677–679

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst FE, Stashenko PP, Mole JE, Tsurumachi T (1985) Purification and partial sequence of human osteoclast-activating factor: identity with interleukin-1 beta. J Immunol 135:2562–2568

    PubMed  CAS  Google Scholar 

  • Dewhirst FE, Ago JM, Peros WJ, Stashenko P (1987) Synergism between parathyroid hormone and interleukin-1 in stimulating bone resorption in organ culture. J Bone Miner Res 2:127–134

    Article  PubMed  CAS  Google Scholar 

  • Durie BGM (1984) Recent advances in multiple myeloma and the related monoclonal gammopathies. In: Fairbanks VF (ed) Current hematology, vol 3. Wiley, New York, 239–285

    Google Scholar 

  • Eisenberg H, Pallotta J, Sacks B, Brickman AS (1989) Parathyroid localization, 3-dimensional modeling, and percutaneous ablation techniques. Endocrinol Metab Clin North Am 18:659–700

    PubMed  CAS  Google Scholar 

  • Eisenberg SP, Evans RJ, Arend WP, Verderber E, Brewer MT, Hannum CH, Thompson RC (1990) Primary structure and functional expression from complementary DNA of a human interleukin–1 receptor antagonist. Nature 343:341–346

    Article  PubMed  CAS  Google Scholar 

  • El Attar TMA, Lin HS (1983) Relative conversion of arachidonic acid through lipoxygenase and cyclo-oxygenase pathways by homogenates of diseased periodontal tissues. J Oral Pathol 12:7–10

    Article  PubMed  Google Scholar 

  • El Attar TMA, Lin HS, Killoy WJ, Vanderhoek JY, Goodson JM (1986) Hydroxy fatty acids and prostaglandin formation in diseased human periodontal pocket tissue. J Periodont Res 21:169–176

    Article  Google Scholar 

  • Felix R, Cecchini MG, Fleisch H (1990) Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse. Endocrinology 127:2592–2594

    Article  PubMed  CAS  Google Scholar 

  • Feyen JHM, Eiford P, Dipadova FE, Trechsel U (1989) Interleukin-6 is produced by bone and modulated by parathyroid hormone. J Bone Miner Res 4:633–638

    Article  PubMed  CAS  Google Scholar 

  • Franklin RB, Tashjian AH (1975) Intravenous infusion of prostaglandin E2 raises plasma calcium concentration in the rat. Endocrinology 97:240–243

    Article  PubMed  CAS  Google Scholar 

  • Fried RM, Voelkel EF, Rice RH, Levine L, Gaffney EV, Tashjian AH (1989) Two squamous cell carcinomas not associated with humoral hypercalcemia produce a potent bone resorption-stimulating factor which is interleukin-1 alpha. Endocrinology 125:742–751

    Article  PubMed  CAS  Google Scholar 

  • Garrett IR, Mundy GR (1989) Relationship between interleukin-1 and prostaglandins in resorbing neonatal calvariae. J Bone Miner Res 4:789–794

    Article  PubMed  CAS  Google Scholar 

  • Garrett IR, Durie BGM, Nedwin GE, Gillespie A, Bringman T, Sabatini M, Bertolini DR, Mundy GR (1987) Production of the bone resorbing cytokine lymphotoxin by cultured human myeloma cells. N Engl J Med 317:526–532

    Article  PubMed  CAS  Google Scholar 

  • Garrett IR, Black KS, Mundy GR (1990a) Interactions between interleukin-6 and interleukin-1 in osteoclastic bone resorption in neonatal mouse calvariae. Calcif Tissue Int 46 [Suppl 2]: 140

    Google Scholar 

  • Garrett IR, Boyce BF, Oreffo ROC, Bonewald L, Poser J, Mundy GR (1990b) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    Article  PubMed  CAS  Google Scholar 

  • Girasole G, Sakagami Y, Hustmyer FG, Yu XP, Derrigs HG, Boswell S, Peacock M, Boder G, Manolagas SC (1990) 17–β estradiol inhibits cytokine induced IL-6 production by bone marrow stromal cells and osteoblasts. J Bone Miner Res 5 [Suppl 2]: 795

    Google Scholar 

  • Globus RK, Patterson-Buckendahl P, Gospodarowicz D (1988) Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor beta. Endocrinology 123:98–105

    Article  PubMed  CAS  Google Scholar 

  • Gowen M, Mundy GR (1986) Actions of recombinant interleukin-1, interleukin-2 and interferon gamma on bone resorption in vitro. J Immunol 136:2478–2482

    PubMed  CAS  Google Scholar 

  • Gowen M, Meikle MC, Reynolds JJ (1983) Stimulation of bone resorption in vitro by a nonprostanoid factor released by human monocytes in culture. Biochim Biophys Acta 762:471–474

    Article  PubMed  CAS  Google Scholar 

  • Gowen M, Wood DD, Russell RG (1985) Stimulation of the proliferation of human bone cells in vitro by human monocyte products with interleukin-1 activity. J Clin Invest 75:1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Gowen M, Nedwin G, Mundy GR (1986) Preferential inhibition of cytokine stimulated bone resorption by recombinant interferon gamma. J Bone Miner Res 1:469–474

    Article  PubMed  CAS  Google Scholar 

  • Gowen M, Chapman K, Littlewood A, Hughes D, Evans D, Russell G (1990) Production of tumor necrosis factor by human osteoblasts is modulated by other cytokines, but not by osteotropic hormones. Endocrinology 126:1250–1255

    Article  PubMed  CAS  Google Scholar 

  • Graves DT, Antoniades HN, Williams SR, Owen AJ (1984a) Evidence for functional platelet–derived growth factor receptors on MG-63 human osteosarcoma cells. Cancer Res 44:2966–2970

    PubMed  CAS  Google Scholar 

  • Graves DT, Owen AJ, Barth RK, Tempst P, Winoto A, Fors L, Hood LE, Antoniades HN (1984b) Detection of c-sis transcripts and synthesis of PDGF- like proteins by human osteosarcoma cells. Science 226:972–997

    Article  PubMed  CAS  Google Scholar 

  • Graves DT, Valentin-Opran A, Delgado R, Valente AJ, Mundy GR, Piche J (1989) The potential role of platelet-derived growth factors as an autocrine or paracrine factor for human bone cells. Connect Tissue Res 23:209–218

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez GE, Mundy GR, Derynck R, Hewlett KL, Katz MS (1987) Inhibition of parathyroid hormone-responsive adenylate cyclase in clonal osteoblast-like cells by transforming growth factor alpha and epidermal growth factor. J Biol Chem 262:15845–15850

    PubMed  CAS  Google Scholar 

  • Gutierrez GE, Mundy GR, Manning DR, Hewlett EL, Katz MS (1990) Transforming growth factor ß enhances parathyroid hormone stimulation of adenylate cyclase in clonal osteoblast–like cells. J Cell Physiol 144:438–447

    Article  PubMed  CAS  Google Scholar 

  • Hagenaars CE, van der Kraan AAM, Kawilarangde EWM, Visser JWM, Nijweide PJ (1989) Osteoclast formation from cloned pluripotent hemopoietic stem cells. Bone Miner 6:179–189

    Article  PubMed  CAS  Google Scholar 

  • Hannum CH, Wilcox CJ, Arend WP, Joslin FG, Dripps DJ, Heimdal PL, Armes LG, Sommer A, Eisenberg SP, Thompson RC (1990) Interleukin-1 receptor antagonist activity of a human interleukin–1 inhibitor. Nature 343:336–340

    Article  PubMed  CAS  Google Scholar 

  • Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M (1986) Growth factors in bone matrix. J Biol Chem 261:12665–12674

    PubMed  CAS  Google Scholar 

  • Heath JK, Saklatvala J, Meikle MC, Atkinson SJ, Reynolds JJ (1985) Pig interleukin-1 (catabolin) is a potent stimulator of bone resorption in vitro. Calcif Tissue Int 37:95–97

    Article  PubMed  CAS  Google Scholar 

  • Howard GA, Bottemiller BL, Turner RT, Rader JI, Baylink DJ (1981) Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci USA 78:3204–3208

    Article  PubMed  CAS  Google Scholar 

  • Ibbotson KJ, Twardzik DR, D’Souza SM, Hargreaves WR, Todaro GJ, Mundy GR (1985) Stimulation of bone resorption in vitro by synthetic transforming growth factor-alpha. Science 228:1007–1009

    Article  PubMed  CAS  Google Scholar 

  • Ibbotson KJ, Harrod J, Gowen M, D’Souza S, Smith DD, Mundy GR (1986) Human recombinant transforming growth factor alpha stimulates bone resorption and inhibits formation in vitro. Proc Natl Acad Sci USA 83:2228–2232

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa Y (1970) Further studies on the differentiation of a cell line of myeloid leukemia. J Cell Physiol 76:175–184

    Article  PubMed  CAS  Google Scholar 

  • Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe T, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T, Kishimoto T, Suda T (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–3303

    PubMed  CAS  Google Scholar 

  • Jee WS, Ueno K, Deng YP, Woodbury DM (1985) The effects of prostaglandin E2 in growing rats: increased metaphyseal hard tissue and cortico-endosteal bone formation. Calcif Tissue Int 37:148–157

    Article  PubMed  CAS  Google Scholar 

  • Jee WS, Ueno K, Kimmel DB, Woodbury DM, Price P, Woodbury LA (1987) The role of bone cells in increasing metaphyseal hard tissue in rapidly growing rats treated with prostaglandin E2. Bone 8:171–178

    Article  PubMed  CAS  Google Scholar 

  • Jennings JC, Mohan S, Baylink DJ (1989) Beta 2-microglobulin is not a bone cell mitogen. Endocrinology 125:404–409

    Article  PubMed  CAS  Google Scholar 

  • Johnson RA, Boyce BF, Mundy GR, Roodman GD (1989) Tumors producing human TNF induce hypercalcemia and osteoclastic bone resorption in nude mice. Endocrinology 124:1424–1427

    Article  PubMed  CAS  Google Scholar 

  • Kawano M, Tanaka H, Ishikawa H, Nobuyoshi M, Iwato K, Asaoku H, Tanabe O, Kuramoto A (1989) Interleukin-1 accelerates autocrine growth of myeloma cells through interleukin-6 in human myeloma. Blood 73:2145–2148

    PubMed  CAS  Google Scholar 

  • Klein DC, Raisz LG (1970) Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 86:1436–1440

    Article  PubMed  CAS  Google Scholar 

  • Klein B, Zhang XG, Jourdan M, Bataille R (1989) Cytokines involved in human multiple myeloma. Monoclonal. Gammapathies II 12:55–59

    CAS  Google Scholar 

  • Kodama H, Yamasaki A, Nose M, Niida S, Ohgame Y, Abe M, Kumegawa M, Suda T (1991) Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med 173:269–272

    Article  PubMed  CAS  Google Scholar 

  • Kondo Y, Sato K, Ohkawa H, Ueyama Y, Okabe T, Sato N, Asano S, Mori M, Ohsawa N, Kosaka K (1983) Association of hypercalcemia with tumors producing colony-stimulating factor (s). Cancer Res 43:2368–2374

    PubMed  CAS  Google Scholar 

  • Kukita A, Bonewald L, Rosen D, Seyedin S, Mundy GR, Roodman GD (1990) Osteoinductive factor inhibits formation of human osteoclast-like cells. Proc Natl Acad Sci USA 87:3023–3026

    Article  PubMed  CAS  Google Scholar 

  • Kurihara N, Bertolini D, Suda T, Akiyama Y, Roodman GD (1990) IL-6 stimulates osteoclast-like multinucleated cell formation in long term human marrow cultures by inducing IL-1 release. J Immunol 144:4226–4230

    PubMed  CAS  Google Scholar 

  • Kurland JI, Peius LM, Ralph P, Bookman RS, Moore MA (1979) Induction of prostaglandin E synthesis in normal and neoplastic macrophages: role for colony-stimulating factor (s) distinct from effects on myeloid progenitor cell proliferation. Proc Natl Acad Sci USA 76:2326–2330

    Article  PubMed  CAS  Google Scholar 

  • Lerner UH (1987) Modifications of the mouse calvarial technique improve the responsiveness to stimulators of bone resorption. J Bone Miner Res 2:375–383

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo JA, Sousa SL, Alander C, Raisz LG, Dinarello CA (1987) Comparison of the bone resorbing activity in the supernatants from phytohemagglutinin stimulated human peripheral blood mononuclear cells with that of cytokines through the use of an antiserum to interleukin-1. Endocrinology 121:1164–1170

    Article  PubMed  CAS  Google Scholar 

  • Lowik CWGM, Vanderpluijm G, Bloys H, Hoekman K, Bijvoet OLM, Aarden LA, Papapoulos SE (1989) Parathyroid hormone (PTH) and PTH–like protein (Pip) stimulate interleukin-6 production by osteogenic cells - a possible role of interleukin-6 in osteoclastogenesis. Biochem Biophys Res Commun 162:1546–1552

    Article  PubMed  CAS  Google Scholar 

  • MacDonald BR, Mundy GR, Clark S, Wang EA, Kuehl TJ, Stanley ER, Roodman GD (1986) Effects of human recombinant CSF–GM and highly purified CSF-1 on the formation of multinucleated cells with osteoclast characteristics in long term bone marrow cultures. J Bone Miner Res 1:227–233

    Article  PubMed  CAS  Google Scholar 

  • Marcelli C, Yates AJP, Mundy GR (1990) In vivo effects of human recombinant transforming growth factor beta on bone turnover in normal mice. J Bone Miner Res 5:1087–1096

    Article  PubMed  CAS  Google Scholar 

  • Meghji S, Sandy J, Scutt AM, Harvey W, Harris M (1988) Stimulation of bone resorption by lipoxygenase metabolites of arachidonic acid. Prostaglandins 36:139–149

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D, Gearing DP (1987) Fatal syndrome in mice engrafted with cells producing high levels of the leukemia inhibitory factor. Proc Natl Acad Sci USA 86:5948–5952

    Article  Google Scholar 

  • Mohan S, Jennings JC, Linkhart TA, Baylink DJ (1988) Primary structure of human skeletal growth factor: homology with human insulin–like growth factor-II. Biochim Biophys Acta 966:44–55

    Article  PubMed  CAS  Google Scholar 

  • Moore RN, Oppenheim JJ, Farrar JJ, Carter CS, Waheed A, Shadduck RK (1980) Production of lymphocyte–activating factor (Interleukin-1) by macrophages activated with colony–stimulating factors. J Immunol 125:1302–1305

    PubMed  CAS  Google Scholar 

  • Mundy GR, Wilkinson R, Heath DA (1983) Comparative study of available medical therapy for hypercalcemia of malignancy. Am J Med 74:421–432

    Article  PubMed  CAS  Google Scholar 

  • Ng KW, Hudson PJ, Power BE, Manji SS, Gummer PR, Martin TJ (1989) Retinoic acid and tumour necrosis factor–alpha act in concert to control the level of alkaline phosphatase mRNA. J Mol Endocrinol 3:57–64

    Article  PubMed  CAS  Google Scholar 

  • Pacifici R, Rifas L, Teitelbaum S, Slatopolsky E, McCracken R, Bergfeld M, Lee W, Avioli LV, Peck WA (1987) Spontaneous release of interleukin-1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci USA 84:4616–4620

    Article  PubMed  CAS  Google Scholar 

  • Pacifici R, Rifas L, McCracken R, Vered I, McMurty C, Avioli L, Peck WA (1989) Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin–1 release. Proc Natl Acad Sci USA 86:2398–2402

    Article  PubMed  CAS  Google Scholar 

  • Pfeilschifter J, Mundy GR, Roodman GD (1989) Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclast–like cells in vitro. J Bone Miner Res 4:113–118

    Article  PubMed  CAS  Google Scholar 

  • Pizurki L, Rizzoli R, Bonjour JP (1990) Inhibition by (D-Trpl2, Tyr34) bPTH (7–34) amide of PTH and PTHrP effects on Pi transport in renal cells. Am J Physiol 259:F389–392

    PubMed  CAS  Google Scholar 

  • Powles TJ, Dowsett M, Easty GC, Easty DM, Neville AM (1976) Breast cancer osteolysis, bone métastasés, and anti–osteolytic effect of aspirin. Lancet i:608–610

    Article  Google Scholar 

  • Powles TJ, Muindi J, Coombes RC (1982) Mechanisms for development of bone metastases and effects of anti–inflammatory drugs. In: Powles TJ, Bockman RS, Honn KV, Ramwell P (eds) Prostaglandins and related lipids, vol 2. Liss, New York, pp 541–553

    Google Scholar 

  • Raisz LG, Sandberg AL, Goodson JM, Simmons HA, Mergenhagen SE (1974) Complement–dependent stimulation of prostaglandin synthesis and bone resorption. Science 185:789–791

    Article  PubMed  CAS  Google Scholar 

  • Raisz LG, Dietrich JW, Simmons HA, Seyberth HW, Hubbard WN, Oates JA (1977) Effects of prostaglandin endoperoxides and metabolites and bone resorption in vitro. Nature 267:532–535

    Article  PubMed  CAS  Google Scholar 

  • Raisz LG, Simmons HA, Sandberg AL, Canalis E (1980) Direct stimulation of bone resorption by epidermal growth factor. Endocrinology 107:270–273

    Article  PubMed  CAS  Google Scholar 

  • Reid LR, Lowe C, Cornish J, Skinner SJM, Hilton DJ, Willson TA, Gearing DP, Martin TJ (1990) Leukemia inhibitor factor - a novel bone-active cytokine. Endocrinology 126:1416–1420

    Article  PubMed  CAS  Google Scholar 

  • Rodan SB, Wesolowski G, Thomas K, Rodan GA (1987) Growth stimulation of rat calvaria osteoblastic cells by acidic fibroblast growth factor. Endocrinology 121:1917–1923

    Article  PubMed  CAS  Google Scholar 

  • Roodman GD, Takahashi N, Bird A, Mundy GR (1987) Tumor necrosis factor a (TNF) stimulates formation of osteoclast–like cell (OCL) in long term human marrow cultures by stimulating production of interleukin-1 (IL-1). Clin Res 35:515A

    Google Scholar 

  • Sabatini M, Garrett IR, Mundy GR (1987) TNF potentiates the effects of interleukin-1 on bone resorption in vitro. J Bone Miner Res 2:34

    Google Scholar 

  • Sabatini M, Boyce B, Aufdemorte T, Bonewald L, Mundy GR (1988) Infusions of recombinant human interleukin-1 alpha and beta cause hypercalcemia in normal mice. Proc Natl Acad Sci USA 85:5235–5239

    Article  PubMed  CAS  Google Scholar 

  • Sabatini M, Yates AJ, Garrett R, Chavez J, Dunn J, Bonewald L, Mundy GR (1990a) Increased production of tumor necrosis factor by normal immune cells in a model of the humoral hypercalcemia of malignancy. Lab Invest 63: 676–681

    PubMed  CAS  Google Scholar 

  • Sabatini M, Chavez J, Mundy GR, Bonewald LF (1990b) Stimulation of tumor necrosis factor release from monocytic cells by the A375 human melanoma via granulocyte–macrophage colony stimulating factor. Cancer Res 50:2673–2678

    PubMed  CAS  Google Scholar 

  • Sato K, Mimura H, Han DC, Kariuchi T, Ueyama Y, Ohkawa H, Okabe T, Kondo Y, Ohsawa N, Tsushima T, Shizume K (1986) Production of bone-resorbing activity and colony-stimulating activity in vivo and in vitro by a human squamous cell carcinoma associated with hypercalcemia and leukocytosis. J Clin Invest 78:145–154

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Fujii Y, Kasono K, Ozawa M, Imamura H, Kanaji Y, Kurosawa H, Tsushima T, Shizume K (1989) Parathyroid hormone–related protein and interleukin-la synergistically stimulate bone resorption in vitro and increase the serum calcium concentration in mice in vivo. Endocrinology 124:2172–2178

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Asano S, Ueyama Y, Mori M, Okabe T, Kondo Y, Ohsawa N, Kosaka K (1979) Granulocytosis and colony–stimulating activity (CSA) produced by a human squamous cell carcinoma. Cancer 43:605–610

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Sato K, Shizume K, Yamazaki K, Demura H (1990) Repeated injection of mouse interferon-gamma (IFn-y) decreases serum calcium concentration in tumor-bearing hypercalcemic nude mice. J Bone Miner Res 5 [Suppl]:484

    Google Scholar 

  • Seckinger P, Klein-Nulend J, Alander C, Thompson RC, Dayer JM, Raisz LG (1990) Natural and recombinant human IL-1 receptor antagonists block the effects of IL-1 on bone resorption and prostaglandin production. J Immunol 145:4181–4184

    PubMed  CAS  Google Scholar 

  • Seyberth HW, Segre GV, Morgan JL, Sweetman BJ, Potts JT, Oates JA (1975) Prostaglandins as mediators of hypercalcemia associated with certain types of cancer. N Engl J Med 293:1278–1283

    Article  PubMed  CAS  Google Scholar 

  • Shinar DM, Sato M, Rodan GA (1990) The effects of hemopoietic growth factors on the generation of osteoclast-like cells in mouse bone marrow cultures. Endocrinology 126:17280–1735

    Google Scholar 

  • Smith D, Gowen M, Mundy GR (1987) Effects of interferon gamma and other cytokines on collagen synthesis in fetal rat bone cultures. Endocrinology 120:2494-2499

    Article  PubMed  CAS  Google Scholar 

  • Stashenko P, Dewhirst FE, Peros WJ, Kent RL, Ago JM (1987) Synergistic interactions between interleukin-1, tumor necrosis factor, and lymphotoxin in bone resorption. J Immunol 138:1464-1468

    PubMed  CAS  Google Scholar 

  • Takahashi N, Mundy GR, Roodman GD (1986) Recombinant human gamma interferon inhibits formation of human osteoclast like cells. J Immunol 137:3541-3549

    Google Scholar 

  • Tashjian AH, Voelkel EF, Levine L, Goldhaber P, (1972) Evidence that the bone resorption-stimulating factor produced by mouse fibrosarcoma cells is prostaglandin E2: a new model for the hypercalcemia of cancer. J Exp Med 136:1329-1343

    Article  PubMed  CAS  Google Scholar 

  • Tashjian AH, Rice JE, Sides K (1977) Biological activities of prostaglandin analogues and metabolites on bone in organ culture. Nature 266:645-647

    Article  PubMed  CAS  Google Scholar 

  • Tashjian AH, Wright DR, Ivey JL, Pont A (1978) Calcitonin binding sites in bone: relationships to biological response and “escape”. Recent Prog Horm Res 34:285-334

    PubMed  CAS  Google Scholar 

  • Tashjian AH, Voelkel EF, Lazzaro M, Singer FR, Roberts AB, Derynck R, Winkler ME, Levine L (1985) Alpha and beta transforming growth factors stimulate prostaglandin production and bone resorption in cultured mouse calvaria. Proc Natl Acad Sci USA 82:4535-4538

    Article  PubMed  CAS  Google Scholar 

  • Tashjian AH, Voelkel EF, Lazzaro M, Goad D, Bosma T, Levine L (1987) Tumor necrosis factor a (cachectin) stimulates bone resorption in mouse calvaria via a prostaglandin-mediated mechanism. Endocrinology 120:2029-2036

    Article  PubMed  CAS  Google Scholar 

  • Thomson BM, Saklatvala J, Chambers TJ (1986) Osteoblasts mediate interleukin-1 stimulation of bone resorption by rat osteoclasts. J Exp Med 164:104-112

    Article  PubMed  CAS  Google Scholar 

  • Tomida M, Yamamoto-Yamaguchi Y, Hozumi M (1984) Purification of a factor inducing differentiation of mouse myeloid leukemic Ml cells from conditioned medium of mouse fibroblast L929 cells. J Biol Chem 259:10978-10982

    PubMed  CAS  Google Scholar 

  • Toya M, Kuroda M, Obuchi M, Ikawa T, Habu K, Ichikawa T (1981) A case report of the maxillary cancer associated with marked leukocytosis and hypercalcemia. J Otolaryngol Jpn 84:1554-1562

    Article  CAS  Google Scholar 

  • Valentin A, Eilon G, Saez S, Mundy GR (1985) Estrogens and anti-estrogens stimulate release of bone resorbing activity by cultured human breast cancer cells. J Clin Invest 75:726-731

    Article  Google Scholar 

  • Van der Wijngaert FP, Tas MC, van der Meer JWM, Burger EH (1987) Growth of osteoclast precursor-like cells from whole mouse bone marrow: Inhibitory effect of CSF-1. Bone Miner 3:97-110

    PubMed  Google Scholar 

  • Yoneda T, Bessho M, Nishikawa N, Matusumoto K, Sakuda M (1985) Pathogenesis of hypercalcemia and leukocytosis in a patient with tongue cancer. Jpn J Oral Surg 31:1917-1924

    Article  Google Scholar 

  • Yoneda T, Nishikawa N, Nishimura R, Kato I, Sakuda M (1989) Three cases of oral squamous cancer associated with leukocytosis, hypercalcemia or both. Oral Surg 68:604-611

    Article  PubMed  CAS  Google Scholar 

  • Yoneda T, Mundy GR, Roodman GD (1990) Induction of differentiation of the human promyelocytic HL-60 cells into cells with the osteoclast phenotype. In: Cohn DV, Glorieux FH, Martin TJ (eds) Calcium regulation and bone metabolism. Basic and clinical aspects, vol 10. Excerpta Medica, Amsterdam, pp 425-429

    Google Scholar 

  • Yoneda T, Nishimura R, Kato I, Ohmae M, Takita M, Sakuda M (1991a) Frequency of the hypercalcemia-leukocytosis syndrome in oral malignancies. Cancer 51:2438-2443

    CAS  Google Scholar 

  • Yoneda T, Alsina MM, Chavez JB, Bonewald L, Nishimura R, Mundy GR (1991b) Evidence that splenic cytokines play a pathogenetic role in the paraneoplastic syndromes of cachexia, hypercalcemia and leukocytosis in a human tumor in nude mice. J Clin Invest 87:977-985

    Article  PubMed  CAS  Google Scholar 

  • Yoneda Y, Aufdemorte TB, Nishimura R, Nishikawa N, Sakuda M, Alsina MM, Chavez JB, Mundy GR (1991c) Occurrence of hypercalcemia and leukocytosis with cachexia in a human squamous cell carcinoma of the maxilla in athymic nude mice. A novel experimental model of three concomitant paraneoplastic syndromes. J Clin Oncol 9:468-477

    PubMed  CAS  Google Scholar 

  • Yoneda T, Kato I, Bonewald LF, Chisoku H, Burgess WH, Mundy GR (1991d) A novel osteoclastpoietic peptide: purification and characterization. J Bone Miner Res 6 [Suppl 1]:454

    Google Scholar 

  • Yoshida H, Hayashi SI, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa SI (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442-444

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mundy, G.R. (1993). Cytokines of Bone. In: Physiology and Pharmacology of Bone. Handbook of Experimental Pharmacology, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77991-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77991-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77993-0

  • Online ISBN: 978-3-642-77991-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics