Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 107))

Abstract

Calcium carries out two types of function in the body. At the gross macroscopic level it is the main constituent of the solid mineral that gives bone its rigidity and strength, a prerequisite for the evolutionary transition from invertebrate to vertebrate life. The presence of mineral crystals is the most distinctive feature of bone as a tissue; despite the present neglect of these topics by most students of calcium metabolism, the composition, structure, and physicochemical properties of the mineral have important metabolic as well as mechanical consequences (Glimcher 1984). The amount of calcium in the body depends mainly on total bone mass, which is partly regulated in accordance with biomechanical needs by the cells whose function is described in the next three chapters. At the submicroscopic and molecular levels, ionic calcium is essential for a wide variety of cellular functions, of which a detailed account is beyond the scope of this text (Nordin 1988). Calcium moves into and out of cells along molecular channels that can be opened or closed. Abrupt spikes in the very low intracellular concentration of calcium, spreading rapidly from one region of the cell to another, serve as a versatile signaling mechanism (Lipscombe et al. 1988). Consequently, intracellular calcium is not subject to homeostatic control except in the gross sense that a large excess of calcium may lead to, or at least accompany, cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adami S, Muirhead N, Manning RM, Gleed JH, Papapoulos SE, Sandler LM, Catto GRD, O’Riordan JLH (1982) Control of secretion of parathyroid hormone in secondary hyperparathyroidism. Clin Endocrinol (Oxf) 16:463–473

    CAS  Google Scholar 

  • Adami S, Mian M, Bertoldo F, Rossini M, Jayawerra P, O’Riordan JLH, Lo Cascio V (1990) Regulation of calcium-parathyroid hormone feedback in primary hyperparathyroidism: effects of bisphosphonate treatment. Clin Endocrinol (Oxf) 33:391–397

    CAS  Google Scholar 

  • Anast CS, Guthrie RA (1971) Decreased calcium tolerance in nongoitrous cretins. Pediatr Res 5:668–672

    Google Scholar 

  • Arnold JS, Frost HM, Buss RO (1971) The osteocyte as a bone pump. Clin Orthop 78:47–55

    PubMed  CAS  Google Scholar 

  • Aukland K, Nicolaysen G (1981) Interstitial fluid volume: local regulatory mechanisms. Physiol Rev 61:556–633

    PubMed  CAS  Google Scholar 

  • Azria M (1989) The calcitonins: physiology and pharmacology. Basel, Karger

    Google Scholar 

  • Balmain N (1991) Calbindin-D9K: a vitamin-D-dependent, calcium-binding protein in mineralized tissues. Clin Orthop 265–270

    Google Scholar 

  • Benson L, Rastad J, Wide L, Akerstrom G, Ljunghall S (1986) Stimulation of parathyroid hormone secretion by EDTA infusion - a test for the differential diagnosis of hypercalcaemia. Acta Endocrinol (Copenh) 111:498–506

    CAS  Google Scholar 

  • Best JB (1959) Some theoretical considerations concerning crystals with relevance to the physical properties of bone. Biochim Biophys Acta 32:194–202

    PubMed  CAS  Google Scholar 

  • Bijvoet OLM (1977) Kidney function in calcium and phosphate metabolism. In: Avioli LV, Krane SM (eds) Metabolic bone disease, vol I. Academic, New York

    Google Scholar 

  • Bijvoet OLM, Harinck HIJ (1984) The assessment of renal calcium reabsorption. In: Massry SG, Maschio G, Ritz E (eds) Phosphate and mineral metabolism. Plenum, New York, pp 111–126

    Google Scholar 

  • Bilezikian JP, Silverberg SJ, Shane E, Parisien M, Dempster DW (1991) Charac- terization and evaluation of asymptomatic primary hyperparathyroidism. J Bone Miner Res 6:S85–S89

    PubMed  Google Scholar 

  • Blum JW, Fischer JA, Schwoerer D, Hunziker W, Binswanger U (1974a) Acute parathyroid hormone response: sensitivity, relationship to hypocalcemia and rapidity. Endocrinology 95:753–759

    PubMed  CAS  Google Scholar 

  • Blum JW, Mayer GP, Potts JT (1974b) Parathyroid hormone responses during spontaneous hypocalcemia and induced hypercalcemia in cows. Endocrinology 95:84–92

    PubMed  CAS  Google Scholar 

  • Bonar LC, Grynpas MD, Roberts JE, Griffin RG, Glimcher MJ (1985) Physical and chemical characterization of the development and maturation of bone mineral. In: Butler WT (ed) The chemistry and biology of mineralized tissues. Proceedings of the 2nd international conference on the chemistry and biology of mineralized tissues, Ebsco Media, Birmingham, Alabama, pp 226–233

    Google Scholar 

  • Boucher A, D’Amour P, Hamel L, Fugere P, Gascon-Barre M, Lepage R, Ste- Marie LG (1989) Estrogen replacement decreases the set point of parathyroid hormone stimulation by calcium in normal postmenopausal women. J Clin Endocrinol Metab 68:831–836

    PubMed  CAS  Google Scholar 

  • Brent GA, LeBoff MS, Seely EW, Conlin PR, Brown EM (1988) Relationship between the concentration and rate of change of calcium and serum intact parathyroid hormone levels in normal humans. J Clin Endocrinol Metab 67: 944–950

    PubMed  CAS  Google Scholar 

  • Bronner F (1982) Calcium homeostasis. In: Disorders of mineral metabolism, vol II. Academic, San Diego, pp 43–102

    Google Scholar 

  • Bronner F (1989) Renal calcium transport: mechanisms and regulation - an over- view. Am J Physiol 257 (Renal Fluid Electrolyte Physiol 26):F707–F711

    PubMed  CAS  Google Scholar 

  • Bronner F (1990) Intestinal calcium transport: the cellular pathway. Miner Electrolyte Metab 16:94–100

    PubMed  CAS  Google Scholar 

  • Bronner F, Stein WD (1992) Modulation of bone calcium-binding sites regulates plasma calcium - an hypothesis. Calcif Tissue Int 50:483–489

    PubMed  CAS  Google Scholar 

  • Brooks M (1987) Bone blood flow measurement, part 2. Bone Clin Biochem News Rev 4:33–36

    Google Scholar 

  • Brown EM (1983) Four-parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular calcium concentration in normal and abnormal parathyroid tissue. J Clin Endocrinol Metab 56:572–581

    PubMed  CAS  Google Scholar 

  • Brown EM, Broadus AE, Brennan MF, Gardner DG, Marx SJ, Spiegel AM, Downs RW Jr, Attie M, Aurbach GD (1979a) Direct comparison in vivo and in vitro of suppressibility of parathyroid function by calcium in primary hyperparathyroidism. J Clin Endocrinol Metab 48:604–610

    PubMed  CAS  Google Scholar 

  • Brown EM, Gardner DG, Brennan MF, Marx SJ, Spiegel AM, Attie MF, Downs RW Jr, Doppman JL, Aurbach GD (1979b) Calcium-regulated parathyroid hormone release in primary hyperparathyroidism: studies in vitro with dispersed parathyroid cells. Am J Med 66:923–931

    PubMed  CAS  Google Scholar 

  • Brown EM, Wilson RE, Thatcher JG, Marynick SP (1981) Abnormal calcium- regulated PTH release in normal parathyroid tissue from patients with adenoma. Am J Med 71:565–570

    PubMed  CAS  Google Scholar 

  • Brown EM, LeBoff MS, Oetting M, Posillico JT, Chen C (1987) Secretory con- trol in normal and abnormal parathyroid tissue. Rec Prog Horm Res 43:337–382

    PubMed  Google Scholar 

  • Bushinsky DA (1987) Effects of parathyroid hormone on net proton flux from neonatal mouse calvariae. Am J Physiol 252:F585–F589

    PubMed  CAS  Google Scholar 

  • Bushinsky DA, Chabala JM, Levi-Setti R (1989) Ion microprobe analysis of mouse calvariae in vitro: evidence for a “bone membrane.” Am J Physiol 256: E152–E158

    PubMed  CAS  Google Scholar 

  • Calvo MS, Eastell R, Offord KP, Bergstralh EJ, Burritt MF (1991) Circadian variation in ionized calcium and intact parathyroid hormone: evidence for sex differences in calcium homeostasis. J Clin Endocrinol Metab 72:69–76

    PubMed  CAS  Google Scholar 

  • Cantley LK, Ontjes DA, Cooper CW, Thomas CG, Leight GS, Wells SA Jr (1985) Parathyroid hormone secretion from dispersed human hyperparathyroid cells: increased secretion in cells from hyperplastic glands versus adenomas. J Clin Endocrinol Metab 60:1032–1037

    PubMed  CAS  Google Scholar 

  • Cecchhini AB, Melbin J, Noordergraaf A (1981) Set-point: is it a distinct structural entity in biological control? J Theor Biol 93:387–394

    Google Scholar 

  • Chambers TJ, Chambers JC, Symonds J et al. (1986) The effect of human calcitonin on cytoplasmic spreading of rat osteoclasts. J Clin Endocrinol Metab 63: 1080–1085

    PubMed  CAS  Google Scholar 

  • Charkes ND, Brookes M, Makler PPT Jr (1979) Studies of skeletal tracer kinetics: II. Evaluation of a five–compartment model of [18F]fluoride kinetics in rats. J Nucl Med 20:1150–1157

    PubMed  CAS  Google Scholar 

  • Charles P, Mosekilde L, Taagehoj Jensen F (1986) Primary hyperparathyroidism: evaluated by 47calcium kinetics, calcium balance and serum bone-Gla-protein. Eur J Clin Invest 16:277–283

    PubMed  CAS  Google Scholar 

  • Conlin PR, Fajtova VT, Mortensen RM, LeBoff MS, Brown EM (1989) Hysteresis in the relationship between serum ionized calcium and intact parathyroid hormone during recovery from induced hyper- and hypocalcemia in normal humans. J Clin Endocrinol Metab 69:593–599

    PubMed  CAS  Google Scholar 

  • Copp DH (1964) The hormones of the parathyroid glands and calcium homeostasis. In: Frost HM (ed) Bone biodynamics. Little Brown, Boston, pp 409–421

    Google Scholar 

  • Copp DH (1970) Endocrine regulation of calcium metabolism. Annu Rev Physiol 32:61–86

    PubMed  CAS  Google Scholar 

  • Copp DH, Shim SS (1963) The homeostatic function of bone as a mineral reservoir. Oral Surg Oral Med Oral Pathol 16:738–744

    PubMed  CAS  Google Scholar 

  • Copp DH, Moghadan H, Mensen ED, McPherson GD (1961) The parathyroids and calcium homeostasis. In: Greep RO, Talmage RV (eds) The parathyroids. Thomas, Springfield, pp 203–223

    Google Scholar 

  • Copp DH, Mensen ED, McPherson GD (1965) Regulation of blood calcium. Clin Orthop 17:288–296

    Google Scholar 

  • Deane N (1966) Kidney and electrolytes. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • DeFronzo RA, Goldberg M, Agus ZS (1976) Normal diluting capacity in hyponatremic patients. Ann Intern Med 84:538–542

    PubMed  CAS  Google Scholar 

  • DeLuca HF (1983) Metabolism and mechanism of action of vitamin D - 1982. In: Peck WA (ed) Bone and mineral research vol 1. Excerpta Medica, Amsterdam, pp 7–73

    Google Scholar 

  • DeLuca HF, Krisinger J, Darwish H (1990) The vitamin D system: 1990. Kidney Int 38:S2–S8

    CAS  Google Scholar 

  • Dhem A (1964) Ca47 in clinical studies of bone physiopathology. In: Medical uses of Ca47: second panel report. International Atomic Energy Agency, Vienna, pp 50–55

    Google Scholar 

  • Doi Y, Okuda R, Takezawa Y, Shibata S, Moriwaki Y, Wakamatsu N, Shimizu N, Moriyama K, Shimokawa H (1989) Osteonectin inhibiting de novo formation of apatite in the presence of collagen. Calcif Tissue Int 44:200–208

    PubMed  CAS  Google Scholar 

  • Doty SB, Robinson RA, Schofield B (1976) Morphology of bone and histochemical staining characteristics of bone cells. In: Greep RO, Astwood EB, Aurbach GD (eds) Handbook of physiology, vol VII. American Physiological Society Washington

    Google Scholar 

  • Dunlay R, Rodriguez M, Felsenfeld AJ, Llach F (1989) Direct inhibitory effect of calcitriol on parathyroid function (sigmoidal curve) in dialysis. Kidney Int 36: 1093–1098

    PubMed  CAS  Google Scholar 

  • Dziak R, Brand JS (1974) Calcium transport in isolated bone cells: I. Bone cell isolation procedures. J Cell Physiol 84:75–83

    PubMed  CAS  Google Scholar 

  • Eanes ED (1985) Dynamic aspects of apatite phases of mineralized tissues. In: Butler WT (ed) The chemistry and biology of mineralized tissues. Proceedings of the 2nd international conference on the chemistry and biology of mineralized tissues, Ebsco Media, Birmingham, Alabama, pp 213–220

    Google Scholar 

  • Edelman IS, James AH, Baden H, Moore FD (1954) Electrolyte composition of bone and the penetration of radiosodium and deuterium oxide into dog and human bone. J Clin Invest 33:127–131

    Google Scholar 

  • Edmondson JW, Li T-K (1976) The relationship of serum ionized and total calcium in primary hyperparathyroidism. J Lab Clin Med 87:624–629

    PubMed  CAS  Google Scholar 

  • Eidelman N, Chow LC, Brown WE (1981) Calcium phosphate saturation levels in ultrafiltered serum. Calcif Tissue Int 40:71–78

    Google Scholar 

  • Engel MB, Catchpole HR (1989) Microprobe analysis of element distribution in bovine extracellular matrices and muscle. Scanning Microsc 3:887–894

    PubMed  CAS  Google Scholar 

  • Favus MJ (ed) (1990) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society of Bone and Mineral Research, Kelseyville

    Google Scholar 

  • Federman M, Nichols G Jr (1974) Bone cell cilia: vestigial or functional organelles? Calcif Tissue Res 17:81–85

    PubMed  CAS  Google Scholar 

  • Fitzpatrick LA, Leong DA (1990) Individual parathyroid cells are more sensitive to calcium than a parathyroid cell population. Endocrinology 126:1720–1727

    PubMed  CAS  Google Scholar 

  • Flear CTG, Singh CM (1973) Hyponatraemia and sick cells. Br J Anaesth 45: 976–994

    PubMed  CAS  Google Scholar 

  • Foldes J, Parfitt AM, Shih M-S, Rao DS, Kleerekoper M (1991) Structural and geometric changes in iliac bone: relationship to normal aging and osteoporosis. J Bone Miner Res 6:759–766

    PubMed  CAS  Google Scholar 

  • Fox J (1991) Regulation of parathyroid hormone secretion by plasma calcium in aging rats. Am J Physiol 260 (Endocrinol Metab 23):E220–E225

    PubMed  CAS  Google Scholar 

  • Fox J, Heath H III (1981) The “calcium clamp”: effect of constant hypocalcemia on parathyroid hormone secretion. Am J Physiol 240 (Endocrinol Metab 3): E649–E655

    PubMed  CAS  Google Scholar 

  • Fox J, Offord KP, Heath H III (1981) Episodic secretion of parathyroid hormone in the dog. Am J Physiol 24 (Endocrinol Metab 4):E171–E177

    Google Scholar 

  • Friedlander MA, Segre GV (1988) Response to parathyroid hormone in normal human kidney donors before and after uninephrectomy. J Clin Endocrinol Metab 114:358–363

    Google Scholar 

  • Gardin JP, Patron P, Fouqueray B, Prigent A, Paillard M (1988) Maximal PTH secretory rate and set point for calcium in normal subjects and patients with primary hyperparathyroidism. Miner Electrolyte Metab 14:221–228

    PubMed  CAS  Google Scholar 

  • Gleick J (1988) Chaos: making a new science. Penguin, New York

    Google Scholar 

  • Glimcher MJ (1984) Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philos Trans R Soc Lond [Biol] 304:479–508

    CAS  Google Scholar 

  • Glimcher MJ (1990) The nature of the mineral component of bone and the mechanism of calcification. In: Avioli LV, Krane SM (eds) Metabolic bone disease and clinically related disorders, 2nd edn. Saunders, Philadelphia, pp 42–56

    Google Scholar 

  • Goldbeter A, Decroly O (1983) Temporal self-organization in biochemical systems: periodic behavior vs. chaos. Am J Physiol 245:R478–R483

    PubMed  CAS  Google Scholar 

  • Goulding A, Everitt HE, Cooney JM, Spears GFS (1986) Sodium and osteoporosis. In: Wahlqvist ML, Truswell AS (eds) Recent advances in clinical nutrition, vol 2. Libbey, London, pp 99–108

    Google Scholar 

  • Grant FD, Conlin PR, Brown EM (1990) Rate and concentration dependence of parathyroid hormone dynamics during stepwise changes in serum ionized calcium in normal humans. J Clin Endocrinol Metab 71:370–378

    PubMed  CAS  Google Scholar 

  • Green J, Kleeman CR (1991) Role of bone in regulation of systemic acid-base balance. Kidney Int 39:9–26

    PubMed  CAS  Google Scholar 

  • Groer PG, Marshall JH (1973) Mechanism of calcium exchange at bone surfaces. Calcif Tissue Res 12:175–192

    PubMed  CAS  Google Scholar 

  • Grubb SA, Edwards G, Talmage RV (1977) Effect of endogenous and infused parathyroid hormone on plasma concentrations of recently administered 45Ca. Calcif Tissue Res 24:209–214

    PubMed  CAS  Google Scholar 

  • Gylfe E, Akerstrom G, Juhlin C, Klareskog L, Rastad J (1990) Regulation of cytoplasmic Ca2+ and hormone release of the parathyroid cell. Horm Cell Regul 210:5–15

    CAS  Google Scholar 

  • Hanley DA, Ayer LM (1986) Calcium-dependent release of carboxyl-terminal fragments of parathyroid hormone by hyperplastic human parathyroid tissue in vitro. J Clin Endocrinol Metab 63:1075–1079

    PubMed  CAS  Google Scholar 

  • Harms H-M, Kaptaina U, Kulpmann W-R, Brabant G, Hesch R-D (1989) Pulse amplitude and frequency modulation of parathyroid hormone in plasma. J Clin Endocrinol Metab 69:843–851

    PubMed  CAS  Google Scholar 

  • Harris EK (1981) Statistical aspects of reference values in clinical pathology. Prog Clin Pathol 8:45–66

    PubMed  CAS  Google Scholar 

  • Harris EK, DeMets DL (1971) Biological and analytic components of variation in long-term studies of serum constituents in normal subjects: V. Estimated biological variations in ionized calcium. Clin Chem 17:983–987

    PubMed  CAS  Google Scholar 

  • Harris EK, Kanofsky P, Shakarji G, Cotlove E (1970) Biological and analytic components of variation in long-term studies of serum constituents in normal subjects: II. Estimating biological components of variation. Clin Chem 16:1022–1027

    PubMed  CAS  Google Scholar 

  • Heaney RP (1964) Evaluation and interpretation of calcium-kinetic data in man. Clin Orthop 31:153–183

    Google Scholar 

  • Heaney RP (1976) Calcium kinetics in plasma: as they apply to the measurements of bone formation and resorption rates. In: Bourne GH (ed) The biochemistry and physiology of bone. Academic, New York, pp 105–133

    Google Scholar 

  • Heaney RP (1986) Calcium, bone health, and osteoporosis. In: Peck WA (ed) Bone and mineral research vol 4. Elsevier, New York, pp 255–301

    Google Scholar 

  • Howard JE (1956) Present knowledge of parathyroid function with especial emphasis on its limitations. In: Wolstenholme GEW, O’Connor CM (eds) CIBA Foundation symposium on bone structure and metabolism. Churchill, London, pp 206–221

    Google Scholar 

  • Hughes WS, Cohen S, Arvan D, Seamonds B (1977) The effect of the alkaline tide on serum-ionized calcium concentration in man. Digestion 15:175–181

    PubMed  CAS  Google Scholar 

  • Hughes WS, Aurbach GD, Sharp ME, Marx SJ (1984) The effect of the bicarbonate anion on serum ionized calcium concentration in vitro. J Lab Clin Med 103: 93–103

    PubMed  CAS  Google Scholar 

  • Jaros GG, Guyton AC, Coleman TG (1980) The role of bone in short-term calcium homeostasis: an analog-digital computer simulation. Ann Biomed Eng 8:103–141

    PubMed  CAS  Google Scholar 

  • Jaros GG, Belonje PC, van Hoorn-Hickman R, Newman E (1984) Transient response of the calcium homeostatic system: effect of calcitonin. Am J Physiol 246 (Regulatory Integrative Comp Physiol 15):R693–R697

    PubMed  CAS  Google Scholar 

  • Jones SJ, Boyde A (1976) Experimental study of changes in osteoblastic shape induced by calcitonin and parathyroid extract in an organ culture system. Cell Tissue Res 169:449–465

    Google Scholar 

  • Jung A, Bisaz S, Fleisch H (1973) The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif Tissue Res 11:269–280

    PubMed  CAS  Google Scholar 

  • Jung A, Bartholdi P, Mermillod B, Reeve J, Neer R (1978) Critical analysis of methods for analysing human calcium kinetics. J Theor Biol 73:131–157

    PubMed  CAS  Google Scholar 

  • Kaye M, Henderson J (1988) Direct functional assessment of human osteoblasts by radioautography: methodology and application in end stage renal disease. Clin Invest Med 224–233

    Google Scholar 

  • Kitamura N, Shigeno C, Shiomi K, Lee K, Ohta S, Sone T, Katsushima S, Tadamura E, Kousaka T, Yamamoto I, Dokoh S, Konishi J (1990) Episodic fluctuation in serum intact parathyroid hormone concentration in men. J Clin Endocrinol Metab 70:252–263

    PubMed  CAS  Google Scholar 

  • Kripke DF, Lavie P, Parker D, Huey L, Deftos LJ (1978) Plasma parathyroid hormone and calcium are related to sleep stage cycles. J Clin Endocrinol Metab 47:1021–1027

    PubMed  CAS  Google Scholar 

  • Lacroix P (1962) Autoradiographic study of bone with 45Ca. In: McLean FC, Lacroix P, Budy AM (eds) Radioisotopes and bone. Davis, Philadelphia, pp 51–67

    Google Scholar 

  • Lacroix P (1972) The internal remodeling of bones. In: Bourne GH (ed) The biochemistry and physiology of bone, vol III, 2nd edn. Academic, New York, pp 119–144

    Google Scholar 

  • Ladenson JH, Bowers GN Jr (1973) Free calcium in serum: II. Rigor of homeostatic control, correlations with total serum calcium, and review of data on patients with disturbed calcium metabolism. Clin Chem 19:575–582

    PubMed  CAS  Google Scholar 

  • Larsson L, Ohman S (1979) Serum calcium ion activity. Some aspects on methodological differences and intraindividual variation. Clin Biochem 12:138–141

    PubMed  CAS  Google Scholar 

  • Law WM Jr, Heath H III (1984) Time- and dose-related biphasic effects of synthetic bovine parathyroid hormone fragment 1–34 on urinary cation excretion. J Clin Endocrinol Metab 58:606–608

    PubMed  CAS  Google Scholar 

  • Lemon GJ, Bassingthwaighte JB, Kelly PJ (1982) Influence of parathyroid state on calcium uptake in bone. Am J Physiol 242:E146–E153

    PubMed  CAS  Google Scholar 

  • Levine MA, Aurbach GD (1989) Pseudohypoparathyroidism. In: DeGroot LJ (ed) Endocrinology, vol 2. Saunders, Philadelphia, pp 1055–1079

    Google Scholar 

  • Lipscombe D, Madison DV, Poenie M, Reuter H, Tsien RW, Ysien RY (1988) Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons. Neuron 1:355–365

    PubMed  CAS  Google Scholar 

  • Lloyd HM, Parfitt AM, Jacobi JM, Willgoss DA, Craswell PW, Petrie JJB, Boyle PD (1989) The parathyroid glands in chronic renal failure: a study of their growth and other properties, based on findings in hypercalcemic patients. J Lab Clin Med 114:358–367

    PubMed  CAS  Google Scholar 

  • LoCascio V, Cominacini L, Adami S, Galvanini G, Davoli A, Scuro LA (1982) Relationship of total and ionized serum calcium circadian variations in normal and hyperparathyroid subjects. Horm Metab Res 14:443–444

    PubMed  CAS  Google Scholar 

  • Logue FC, Fraser WD, O’Reilly D St J, Cameron DA, Kelly AJ, Beastall GH (1990) The circadian rhythm of intact parathyroid hormone-(l–84): temporal correlation with prolactin secretion in normal men. J Clin Endocrinol Metab 71:1556–1560

    PubMed  CAS  Google Scholar 

  • Luk SC, Nopajaroonsri C, Simon GT (1974) The ultrastructure of endosteum: a topographic study in young adult rabbits. J Ultrastruct Res 46:165

    PubMed  CAS  Google Scholar 

  • MacGregor J (1964) Blood-bone equilibrium. In: Frost HM (ed) Bone biodynamics. Little Brown, Boston, pp 409–421

    Google Scholar 

  • MacGregor J (1966) Some observations on the nature of bone mineral. In: Fleisch H, Blackwood HJJ, Owen M (eds) Calcified tissue. Springer, Berlin Heidelberg New York, pp 138–142

    Google Scholar 

  • MacGregor J, Brown WE (1965) Blood: bone equilibrium in calcium homeostasis. Nature 205:359–361

    PubMed  CAS  Google Scholar 

  • Markowitz M, Rotkin L, Rosen JF (1981) Circadian rhythms of blood minerals in humans. Science 213:672–674

    PubMed  CAS  Google Scholar 

  • Markowitz ME, Arnaud S, Rosen JF, Thorpy M, Laximinarayan S (1988) Temporal interrelationships between the circadian rhythms of serum parathyroid hormone and calcium concentrations. J Clin Endocrinol Metab 67:1068–1073

    PubMed  CAS  Google Scholar 

  • Marshall DH (1976) Calcium and phosphate kinetics. In: Nordin BEC (ed) Calcium, phosphate and magnesium metabolism. Longman, New York

    Google Scholar 

  • Marshall JH (1969) Measurements and models of skeletal metabolism. In: Comar CL, Bronner F (eds) Mineral metabolism. Academic, New York, pp 1–122

    Google Scholar 

  • Marti R, Wild P, Schraner EM, Mueller M, Moor H (1987) Parathyroid ultrastructure after aldehyde fixation, high-pressure freezing, or microwave irradiation. J Histochem Cytochem 35:1415–1424

    PubMed  CAS  Google Scholar 

  • Massin JP, Vallee G, Savoie JC (1974) Compartmental analysis of calcium kinetics in man: application of a four-compartmental model. Metabolism 23:399–415

    PubMed  CAS  Google Scholar 

  • Matthews JL (1980) Bone structure and ultrastructure. In: Urist MR (ed) Fundamental and clinical bone physiology. Lippincott, Philadelphia

    Google Scholar 

  • Matthews JL, Martin JH (1971) Intracellular transport of calcium and its relationship to homeostasis and mineralization - an electron microscope study. Am J Med 50:589–597

    PubMed  CAS  Google Scholar 

  • Matthews JL, Talmage RV (1981) Influence of parathyroid hormone on bone cell ultrastructure. Clin Orthop 156:27–38

    PubMed  Google Scholar 

  • Matthews JL, Talmage RV, Doppelt R (1980) Responses of the osteocyte lining cell complex, the bone cell unit to calcitonin. Metab Bone Dis Rel Res 2: 113–122

    CAS  Google Scholar 

  • Mayer GP, Habener JF, Potts JT Jr (1976) Parathyroid hormone secretion in vivo: demonstration of a calcium-independent, nonsuppressible component of secretion. J Clin Invest 57:678–683

    PubMed  CAS  Google Scholar 

  • McCance RA (1954) Conference discussion. In: Reifenstein EC (ed) Metabolic interrelations with special reference to calcium. Transactions of the 5th conference. Macy, New York, p 50

    Google Scholar 

  • McCarthy ID, Hughes SPF (1986) Inhibition of bone cell metabolism increases strontium-85 uptake. Calcif Tissue Int 39:386–389

    PubMed  CAS  Google Scholar 

  • McElduff A, Lissner D, Wilkinson M, Posen S (1990) Parathyroid hormone sensitivity in primary hyperparathyroidism and idiopathic hypercalciuria: effects on postadenylate cyclase parameters. J Clin Endocrinol Metab 70:1457–1461

    PubMed  CAS  Google Scholar 

  • McGrath KJ, Heideger WJ, Beach KW (1986) Calcium homeostasis: III. the bone membrane potential and mineral dissolution. Calcif Tissue Int 39:279–283

    PubMed  CAS  Google Scholar 

  • McLean FC, Budy AM (1964) The mineral of bones and teeth. In: Radiation, isotopes, and bone. Academic, New York, pp 61–77

    Google Scholar 

  • Melick RA, Baird CW (1967) Changes in plasma calcium after injection of calcium in hypothyroid and hypoparathyroid women. J Clin Endocrinol 27:1303–1308

    CAS  Google Scholar 

  • Meisen F, Mosekilde L, Eriksen EF, Charles P, Steinicke T (1989) In vivo hormonal effects on trabecular bone remodeling, osteoid mineralization, and skeletal turnover. In: Kleerekoper M, Krane SM (eds) Clinical disorders of bone and mineral metabolism. Liebert, New York, pp 73–87

    Google Scholar 

  • Menanteau J, Neuman WF, Neuman MW (1982) A study of bone proteins which can prevent hydroxyapatite formation. Metab Bone Dis Rel Res 4:157–162

    CAS  Google Scholar 

  • Menton DN, Simmons DJ, Orr BY, Plurad SB (1982) A cellular investment of bone marrow. Anat Rec 203:157–164

    PubMed  CAS  Google Scholar 

  • Milhaud G (1962) Parameters of calcium kinetics in man. In: Medical uses of Ca47. International Atomic Energy Agency, Vienna, pp 61–62

    Google Scholar 

  • Miller SC, Jee WSS (1980) The microvascular bed of fatty bone marrow in the adult beagle. Metab Bone Dis Rel Res 2:239–246

    Google Scholar 

  • Miller SC, Jee WSS (1987) The bone lining cell: a distinct phenotype? Calcif Tissue Int 41:1–5.

    PubMed  CAS  Google Scholar 

  • Miller SC, Bowman BM, Smith JA, Jee WSS (1980) Characterization of endosteal bone-lining cells from fatty marrow bone sites in adult beagles. Anat Rec 198:163–173

    PubMed  CAS  Google Scholar 

  • Mioni G, D’Angelo A, Ossi E, Bertaglia E, Marcon G, Maschio G (1971) The renal handling of calcium in normal subjects and in renal disease. Eur J Clin Biol Res 16:881–887

    CAS  Google Scholar 

  • Moore-Ede MC (1986) Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol 250:R735–R752

    Google Scholar 

  • Moore-Ede MC, Sulzman FM, Fuller CA (1982) The clocks that time us. Harvard University Press, Cambridge

    Google Scholar 

  • Moradian-Oldak J, Weiner S, Addadi L, Landis WJ, Traub W (1991) Electron imaging and diffraction study of individual crystals of bone, mineralized tendon and synthetic carbonate apatite. Connect Tissue Res 25:219–228

    PubMed  CAS  Google Scholar 

  • Morgan B (1973) Osteomalacia, renal osteodystrophy and osteoporosis. Thomas, Springfield

    Google Scholar 

  • Mundy GR (1989) Calcium homeostasis: hypercalcemia and hypocalcemia. Dunitz, London

    Google Scholar 

  • Neer RM (1989) Calcium and inorganic phosphate homeostasis. In: DeGroot L (ed) Endocrinology, 2nd edn. Saunders, Philadelphia, pp 927–953

    Google Scholar 

  • Nellans HN (1990) Intestinal calcium absorption: interplay of paracellular and cellular pathways. Miner Electrolyte Metab 16:101–108

    PubMed  CAS  Google Scholar 

  • Nemere I, Norman AW (1990) Transcaltachia, vesicular calcium transport, and microtubule–associated calbindin–D28K: emerging views of 1,25–dihydroxyvitamin D3–mediated intestinal calcium absorption. Miner Electrolyte Metab 16:109–114

    PubMed  CAS  Google Scholar 

  • Neuman MW (1982) Blood: bone equilibrium. Calcif Tissue Int 34:117–120

    PubMed  CAS  Google Scholar 

  • Neuman MW, Neuman WF (1980) On the measurement of water compartments, pH, and gradients in calvaria. Calcif Tissue Int 31:135–145

    PubMed  CAS  Google Scholar 

  • Neuman MW, Imai K, Kawase T, Saito S (1987) The calcium-buffering phase of bone mineral: some clues to its form and formation. J Bone Miner Res 2: 171–181

    PubMed  CAS  Google Scholar 

  • Neuman WF (1969) The milieu interieur of bone: Claude Bernard revisited. Fed Proc 28:1846–1850

    PubMed  CAS  Google Scholar 

  • Neuman WF (1980) Bone material and calcification mechanisms. In: Urist MR (ed) Fundamental and clinical bone physiology. Lippincott, Philadelphia, pp 83–107

    Google Scholar 

  • Neuman WF, Bareham BJ (1975) Evidence for the presence of secondary calcium phosphate in bone and its stabilization by acid production. Calcif Tissue Res 18:161–172

    PubMed  CAS  Google Scholar 

  • Neuman WF, Neuman MW (1958) The chemical dynamics of bone mineral. University of Chicago Press, Chicago

    Google Scholar 

  • Neuman WF, Neuman MW (1985) Blood: bone calcium homeostasis. Jpn J Oral Biol 27:272–281

    CAS  Google Scholar 

  • Neuman WF, Terepka AR, Canas F, Triffitt JT (1968) The cycling concept of exchange in bone. Calcif Tissue Res 2:262–270

    PubMed  CAS  Google Scholar 

  • Neuman WF, Brommage R, Myers CR (1977) The measurement of Ca2+ effluxes from bone. Calcif Tissue Res 24:113–117

    PubMed  CAS  Google Scholar 

  • Neuman WF, Neuman MW, Brommage R (1978) Aerobic glycolysis in bone: lactate production and gradients in calvaria. Am J Physiol 234:C41–C50

    PubMed  CAS  Google Scholar 

  • Neuman WF, Neuman MW, Myers CR (1979) Blood: bone disequilibrium: III. Linkage between cell energetics and Ca fluxes. Am J Physiol 236:C244–C248

    PubMed  CAS  Google Scholar 

  • Neuman WF, Neuman MW, Diamond AG, Menanteau J, Gibbons WS (1982) Blood: bone disequilibrium: VI. Studies of the solubility characteristics of brushite: apatite mixtures and their stabilization by noncollagenous proteins of bone. Calcif Tissue Int 34:149–157

    PubMed  CAS  Google Scholar 

  • Nicolis G, Prigogine I (1977) Self organization in nonequilibrium systems. From dissipative structures to order through fluctuations. Wiley, New York

    Google Scholar 

  • Nordin BEC (1961) Biochemical aspects of parathyroid function and of hyperpara- thyroidism. In: Sobotka H, Stewart CP (eds) Advances in clinical chemistry, vol 4. Academic, New York, pp 275–320

    Google Scholar 

  • Nordin BEC (ed) (1988) Calcium in human biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nordin BEC, Marshall DH, Peacock M, Robertson WG (1975) Plasma calcium homeostasis. In: Talmage RV, Owen M, Parsons JA (eds) Calcium-regulating hormones. Elsevier, New York, pp 239–253

    Google Scholar 

  • Nussbaum SR, Potts JT Jr (1991) Immunoassays for parathyroid hormone 1–84 in the diagnosis of hyperparathyroidism. J Bone Miner Res 6:S43–S50

    PubMed  CAS  Google Scholar 

  • Orwoll E, Kane-Johnson N, Cook J, Roberts L, Strasik L, McClung M (1986) Acute parathyroid hormone secretory dynamics: hormone secretion from normal primate and adenomatous human tissue in response to changes in extracellular calcium concentration. J Clin Endocrinol Metab 62:950–955

    PubMed  CAS  Google Scholar 

  • Owen M, Triffitt JT, Melick RA (1973) Albumin in bone. Ciba Found Symp 11:263–193

    Google Scholar 

  • Parfitt AM (1969a) Chlorothiazide induced hypercalcemia in juvenile osteoporosis and primary hyperparathyroidism. N Engl J Med 281:55–59

    PubMed  CAS  Google Scholar 

  • Parfitt AM (1969b) Prevention of hypercalcemia (Ca) in vitamin D (D) therapy of hypoparathyroidism. Ann Intern Med 70:64

    Google Scholar 

  • Parfitt AM (1969c) Study of parathyroid function in man by EDTA infusion. J Clin Endocrinol 29:569–580

    CAS  Google Scholar 

  • Parfitt AM (1969d) A theoretical model of the relationship between parathyroid cell mass and plasma calcium concentration in normal and uremic subjects: an analysis of the concept of autonomy and speculations on the mechanism of parathyroid hyperplasia. Arch Intern Med 124:269–273

    PubMed  CAS  Google Scholar 

  • Parfitt AM (1972) The spectrum of hypoparathyroidism. J Clin Endocrinol 1972: 152–158

    Google Scholar 

  • Parfitt AM (1976a) The actions of parathyroid hormone on bone. Relation to bone remodelling and turnover, calcium homeostasis and metabolic bone disease: I. Mechanisms of calcium transfer between blood and bone and their cellular basis. Morphologic and kinetic approaches to bone turnover. Metabolism 25: 809–844

    PubMed  CAS  Google Scholar 

  • Parfitt AM (1976b) The actions of parathyroid hormone on bone. Relation to bone remodelling and turnover, calcium homeostasis and metabolic bone disease: II. PTH and bone cells: bone turnover and plasma calcium regulation. Metabolism 25:909–955

    PubMed  CAS  Google Scholar 

  • Parfitt AM (1978) Tubular reabsorption of calcium in pseudohypoparathyroidism. In: Copp DH, Talmage RV (eds) Endocrinology of calcium metabolism. Excerpta Medica, Amsterdam, p 409

    Google Scholar 

  • Parfitt AM (1979a) Equilibrium and disequilibrium hypercalcemia: new light on an old concept. Metab Bone Dis Rel Res 1:279–293

    Google Scholar 

  • Parfitt AM (1979b) Target cell resistance in pseudohypoparathyroidism. Single or multiple? In: Norman AW (ed) Vitamin D: basic research and its clinical application, de Gruyter, Berlin, pp 949–950

    Google Scholar 

  • Parfitt AM (1980) Morphologic basis of bone mineral measurements. Transient and steady state effects of treatment in osteoporosis. Miner Electrolyte Metab 4: 273–287

    Google Scholar 

  • Parfitt AM (1981) Integration of skeletal and mineral homeostasis. In: DeLuca HF, Frost H, Jee W, Johnston C, Parfitt AM (eds) Osteoporosis: recent advances in pathogenesis and treatment. University Park Press, Baltimore, pp 115–126

    Google Scholar 

  • Parfitt AM (1982) Hypercalcemic hyperparathyroidism following renal transplanta- tion: differential diagnosis, management, and implications for cell population control in the parathyroid gland. Miner Electrolyte Metab 8:92–119

    PubMed  CAS  Google Scholar 

  • Parfitt AM (1983) The physiologic and clinical significance of bone histomorphometric data. In: Recker R (ed) Bone histomorphometry. Techniques and interpreta- tions. CRC Press, Boca Raton, pp 143–223

    Google Scholar 

  • Parfitt AM (1984) The cellular basis of bone remodeling. The quantum concept re- examined in light of recent advances in cell biology of bone. Calcif Tissue Int 36:S37–S45

    PubMed  Google Scholar 

  • Parfitt AM (1987) Bone and plasma calcium homeostasis. Bone 8:51–58

    Google Scholar 

  • Parfitt AM (1988a) The composition, structure and remodeling of bone: a basis for the interpretation of bone mineral measurements. In: Dequeker J, Geusens P, Wahner HW (eds) Bone mineral measurements by photon absorptiometry: methodological problems. Leuven University Press, Leuven, pp 9–28

    Google Scholar 

  • Parfitt AM (1988b) Idiopathic, surgical and other varieties of parathyroid hor- mone deficient hypoparathyroidism. In: DeGroot L (ed) Endocrinology, 2nd edn. Saunders, Philadelphia, pp 1049–1064

    Google Scholar 

  • Parfitt AM (1989) Plasma calcium control at quiescent bone surfaces: a new approach to the homeostatic function of bone lining cells. Bone 10:87–88

    PubMed  CAS  Google Scholar 

  • Parfitt AM (1990a) Bone–forming cells in clinical conditions. In: Hall BK (ed) Bone: a treatise, vol I. The osteoblast and osteocyte. Telford, Caldwell, pp 351–429

    Google Scholar 

  • Parfitt AM (1990b) Osteomalacia and related disorders. In: Avioli LV, Krane SM (eds) Metabolic bone disease and clinically related disorders, 2nd edn. Saunders Philadelphia, pp 329–396

    Google Scholar 

  • Parfitt AM (1990c) Pharmacologic manipulation of bone remodelling and calcium homeostasis. In: Kanis JA (ed) Progress in basic and clinical pharmacology: 4. Calcium metabolism. Karger, Basel, pp 1–27

    Google Scholar 

  • Parfitt AM (1992) The physiologic and pathogenetic significance of bone histo- morphometric data. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven, New York, pp 475–489

    Google Scholar 

  • Parfitt AM, Kleerekoper M (1980a) The divalent ion homeostatic system: physiology and metabolism of calcium, phosphorus, magnesium and bone. In: Maxwell M, Kleeman CR (eds) Clinical disorders of fluid and electrolyte metabolism, 3rd edn. McGraw–Hill, New York, pp 269–398

    Google Scholar 

  • Parfitt AM, Kleerekoper M (1980b) Clinical disorders of calcium, phosphorus and magnesium metabolism. In: Maxwell M, Kleeman CR (eds) Clinical disorders of fluid and electrolyte metabolism, 3rd edn. McGraw-Hill, New York, pp 947–1152

    Google Scholar 

  • Parfitt AM, Kleerekoper M, Villanueva AR (1987) Increased bone age: mechanisms and consequences. In: Christiansen C, Johansen C, Riis BJ (eds) Osteoporosis. Osteopress, Copenhagen, pp 301–308

    Google Scholar 

  • Parfitt AM, Rao DS, Kleerekoper M (1991a) Asymptomatic primary hyper- parathyroidism discovered by multi-channel biochemical screening. Clinical course and considerations bearing on the need for surgical intervention. J Bone Miner Res 6:S97–S101

    PubMed  Google Scholar 

  • Parfitt AM, Willgoss D, Jacobi J, Lloyd HM (1991b) Cell kinetics in parathyroid adenomas: evidence for decline in rates of cell birth and tumour growth, assuming clonal origin. Clin Endocrinol 35:151–157

    CAS  Google Scholar 

  • Parsons JA (1976) Parathyroid physiology and the skeleton. In: Bourne GH (ed) Biochemistry and physiology of bone, vol IV. Academic, New York

    Google Scholar 

  • Payne JW, Walser M (1959) Ion association: II. The effects of multivalent ions on the concentration of free calcium ions as measured by the frog heart method. Bull Johns Hopkins Hosp 105:298–310

    PubMed  CAS  Google Scholar 

  • Payne RB, Carver ME, Morgan DB (1979) Interpretation of serum total calcium: effects of adjustment for albumin concentration on frequency of abnormal values and on detection of change in the individual. J Clin Pathol 32:56–60

    PubMed  CAS  Google Scholar 

  • Payne RB, Jones DP, Walker AP, Evans RT (1986) Clustering of serum calcium and magnesium concentrations in siblings. Clin Chem 32:349–350

    PubMed  CAS  Google Scholar 

  • Peacock M, Robertson WG, Nordin BEC (1969) Relation between serum and urinary calcium with particular reference to parathyroid activity. Lancet i:384

    Google Scholar 

  • Pedersen KO (1972) On the cause and degree of intraindividual serum calcium variability. Scand J Clin Lab Invest 30:191–199

    PubMed  CAS  Google Scholar 

  • Peterson DR, Heideger WJ, Beach KW (1985) Calcium homeostasis: the effect of parathyroid hormone on bone membrane electrical potential difference. Calcif Tissue Int 37:307–311

    PubMed  CAS  Google Scholar 

  • Pinto MR, Kelly PJ (1984) Age–related changes in bone in the dog: fluid spaces and their potassium content. J Orthop Res 1:2–7

    Google Scholar 

  • Ponlot R (1960) Le radiocalcium dans l’étude des os. Arscia, Bruxelles

    Google Scholar 

  • Posner AS (1988) The mineral of bone. Clin Orthop 200:87–99

    Google Scholar 

  • Raina V (1972) Normal osteoid tissue. J Clin Pathol 25:229–232

    PubMed  CAS  Google Scholar 

  • Ramp WK, McNeil RW (1978) Selective stimulation of net calcium efflux from chick embryo tibiae by parathyroid hormone in vitro. Calcif Tissue Res 25:227–232

    PubMed  CAS  Google Scholar 

  • Rao DS, Parfitt AM, Kleerekoper M, Pumo BS, Frame B (1985) Dissociation between the effects of endogenous parathyroid hormone on cAMP generation and on phosphate reabsorption in hypocalcemia due to vitamin D depletion: an acquired disorder resembling pseudohypoparathyroidism type II. J Clin Endocrinol Metab 61:285–290

    PubMed  CAS  Google Scholar 

  • Reeve J (1978) The turnover time of calcium in the exchangeable pools of bone in man and the long-term effect of a parathyroid hormone fragment. Clin Endocrinol 8:445–455

    CAS  Google Scholar 

  • Riggs BL, Marshall JH, Jowsey J, Heaney RP, Bassingthwaighte JB (1971) Quantitative 45Ca autoradiography of human bone. J Lab Clin Med 78:585–598

    PubMed  CAS  Google Scholar 

  • Riggs DS (1963) The mathematical approach to physiological problems. Williams and Wilkins, Baltimore

    Google Scholar 

  • Riggs DS (1966) A quantitative hypothesis concerning the action of the parathyroid hormone. J Theor Biol 12:364–372

    PubMed  CAS  Google Scholar 

  • Riggs DS (1970) Control theory and physiologic feedback mechanisms. Williams and Wilkins, Baltimore

    Google Scholar 

  • Rodan GA, Liberman UA, Paran M, Anbar M (1967) Lack of physicochemical equilibrium between blood and bone calcium in the isolated perfused dog limb. Isr J Med Sci 3:702–713

    CAS  Google Scholar 

  • Rodriguez M, Felsenfeld AJ, Torres A, Pederson L, Llach F (1991) Calcitonin, an important factor in the calcemic response to parathyroid hormone in the rat. Kidney Int 40:219–225

    PubMed  CAS  Google Scholar 

  • Roelen DL, Frolich M, Papapoulos SE (1989) Renal responsiveness to synthetic human parathyroid hormone 1–38 in healthy subjects. Eur J Clin Invest 19: 311–315

    PubMed  CAS  Google Scholar 

  • Rowland RE (1966) Exchangeable bone calcium. Clin Orthop 49:233–248

    PubMed  CAS  Google Scholar 

  • Sanderson PH, Marshall F II, Wilson RE (1960) Calcium and phosphorus homeostasis in the parathyroidectomized dog; evaluation by means of ethylenediamine tetraacetate and calcium tolerance tests. J Clin Invest 39:662–670

    PubMed  CAS  Google Scholar 

  • Scarpace PJ, Neuman WF (1976a) The blood: bone disequilibrium: I. The active accumulation of K+ into the bone extracellular fluid. Calcif Tissue Res 20: 137–149

    CAS  Google Scholar 

  • Scarpace PJ, Neuman WF (1976b) The blood: bone disequilibrium: II. Evidence against the active accumulation of calcium or phosphate into the bone extra- cellular fluid. Calcif Tissue Res 20:151–158

    CAS  Google Scholar 

  • Schartum S, Nichols G Jr (1961) Calcium metabolism of bone in vitro. Influence of bone cellular metabolism and parathyroid hormone. J Clin Invest 40:2083–2091

    PubMed  CAS  Google Scholar 

  • Scherft JP (1972) The lamina limitans of the organic matrix of calcified cartilage and bone. J Ultrastruct Res 38:318

    PubMed  CAS  Google Scholar 

  • Schwarz P, Sorensen HA, Transbol I, McNair P (1990) Induced hypocalcaemia controlled by a citrate clamp technique and the intact parathyroid hormone response obtained. Scand J Clin Lab Invest 50:891–897

    PubMed  CAS  Google Scholar 

  • Seely EW, LeBoff MS, Brown EM, Chen C, Posillico JT, Hollenberg NK, Williams GH (1989a) The calcium channel blocker Diltiazem lowers serum parathyroid hormone levels in vivo and in vitro. J Clin Endocrinol Metab 68:1007–1012

    PubMed  CAS  Google Scholar 

  • Seely EW, Moore TJ, LeBoff MS, Brown EM (1989b) A single dose of lithium carbonate acutely elevates intact parathyroid hormone levels in humans. Acta Endocrinol (Copenh) 121:174–176

    CAS  Google Scholar 

  • Segre GV, Harris ST, Neer R, Potts JT Jr (1981) Sigmoidal relationship between plasma parathyroid hormone and calcium concentration in man (abstract). ASBMR:30A

    Google Scholar 

  • Shannon WA Jr, Roth SI (1974) An ultrastructural study of acid phosphatase activity in normal, adenomatous and hyperplastic (chief cell type) human parathyroid glands. Am J Pathol 77:493–501

    PubMed  Google Scholar 

  • Sheikh MS, Schiller LR, Fordtran JS (1990) In vivo intestinal absorption of calcium in humans. Miner Electrolyte Metab 16:130–146

    PubMed  CAS  Google Scholar 

  • Slatopolsky E, Lopez–Hilker S, Delmez J, Dusso A, Brown A, Martin KJ (1990) The parathyroid-calcitriol axis in health and chronic renal failure. Kidney Int 38:S41–S47

    Google Scholar 

  • Somerville PJ, Kaye M (1982) Action of phosphorus on calcium release in isolated perfused rat tails. Kidney Int 22:348–354

    PubMed  CAS  Google Scholar 

  • Staub JF, Tracqui P, Brezillon P, Milhaud G. Perault-Staub AM (1988) Calcium metabolism in the rat: a temporal self-organized model. Am J Physiol 254: R134–R149

    PubMed  CAS  Google Scholar 

  • Staub JF, Tracqui P, Lausson S, Milhaud G, Perault–Staub AM (1989) A physio- logical view of in vivo calcium dynamics: the regulation of a nonlinear self- organized system. Bone 10:77–86

    PubMed  CAS  Google Scholar 

  • Stauffer M, Baylink DJ, Wergedal JE, Rich C (1973) Decreased bone formation, mineralization, and enhanced resorption in calcium–deficient rats. Am J Physiol 225:269–276

    PubMed  CAS  Google Scholar 

  • Stern PH (1990) Vitamin D and bone. Kidney Int 38:S17–S21

    CAS  Google Scholar 

  • Stote RM, Smith LH, Wilson DM, Dube WJ, Goldsmith RS, Arnaud CD (1972) Hydrochlorothiazide effects on serum calcium and immunoreactive parathyroid hormone concentrations: studies in normal subjects. Ann Intern Med 77: 587–591

    PubMed  CAS  Google Scholar 

  • Talmage RV, Cooper CW, Park HZ (1970) Regulation of calcium transport in bone by parathyroid hormone. Vitam Horm 28:103–140

    PubMed  CAS  Google Scholar 

  • Talmage RV, Grubb SA, Norimatsu H, VanderWiel CJ (1980) Evidence for an important physiological role for calcitonin. Proc Natl Acad Sci USA 77:609–613

    PubMed  CAS  Google Scholar 

  • Talmage RV, Cooper CW, Toverud SU (1983) The physiological significance of calcitonin. In: Peck WA (ed) Bone and mineral research, vol. 1. Excerpta Medica, Amsterdam, pp 74–143

    Google Scholar 

  • Toffaletti J, Bowers GN Jr (1979) The possible physiologic importance of calcium complexes: an opinion. Clin Chim Acta 97:101–105

    PubMed  CAS  Google Scholar 

  • Toffaletti J, Cooper DL, Lobaugh B (1991) The response of parathyroid hormone to specific changes in either ionized calcium, ionized magnesium, or protein-bound calcium in humans. Metabolism 40;8:814–818

    PubMed  CAS  Google Scholar 

  • Tothill P, Hooper G, McCarthy ID, Hughes SPF (1985) The variation with flow-rate of the extraction of bone-seeking tracers in recirculation experiments. Calcif Tissue Int 37:312–317

    PubMed  CAS  Google Scholar 

  • Triffitt JT, Owen M (1977) Preliminary studies in the binding of plasma albumin to bone tissue. Calcif Tissue Res 23:303–305

    PubMed  CAS  Google Scholar 

  • Triffitt JT, Owen ME, Ashton BA, Wilson JM (1978) Plasma disappearance of rabbit α2–HS glycoprotein and its uptake by bone tissue. Calcif Tissue Res 26:155–161

    PubMed  CAS  Google Scholar 

  • Vander Wiel CJ, Grubb SA, Talmage RV (1978) The presence of lining cells on surfaces of human trabecular bone. Clin Orth Rel Res 134:350–355

    Google Scholar 

  • Wallfelt C, Gylfe E, Larsson R, Ljunghall S, Rastad J, Akerstrom G (1988) Relationship between external and cytoplasmic calcium concentrations, parathyroid hormone release and weight of parathyroid glands in human hyperparathyroidism. J Endocrin 116:457–464

    CAS  Google Scholar 

  • Waron M, Rich C (1969) Rate of recovery from acute hypocalcemia as a measure of calcium homeostatic efficiency in the dog. Endocrinology 85:1018–1027

    PubMed  CAS  Google Scholar 

  • Warren HB, Lausen NCC, Segre GV, El–Hajj G, Brown EM (1989) Regulation of calciotropic hormones in vivo in the New Zealand white rabbit. Endocrinology 125:2683–2690

    PubMed  CAS  Google Scholar 

  • Weiner N (1948) Cybernetics or control and communication in the animal and the machine. Technology Press and Wiley & Sons, New York

    Google Scholar 

  • Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39:365–375.

    PubMed  CAS  Google Scholar 

  • Weiner S, Traub W (1989) Crystal size and organization in bone. Connec Tissue Res 21:259–265

    CAS  Google Scholar 

  • Weisinger JR, Favus MJ, Langman CB, Bushinsky DA (1989) Regulation of 1, 25–dihydroxyvitamin D3 by calcium in the parathyroidectomized, parathyroid hormone-replete rat. J Bone Min Res 4:930–934

    Google Scholar 

  • Williams GA, Hargis GK, Galloway WB, Henderson WJ (1966) Evidence for thyrocalcitonin in man. Proc Soc Exp Biol Med 122:1273–1279

    PubMed  CAS  Google Scholar 

  • Wilson P, Kleerekoper M, Lillich R, Parfitt AM (1988) Immunoradiometric assay for intact parathyroid hormone in the diagnosis of hypoparathyroidism. J Bone Min Res 3 (Suppl 1):S131

    Google Scholar 

  • Wirth DJ, Heideger WJ, Beach KW (1986) Calcium homeostasis II: the sodium- potassium pump. Calcif Tissue Int 38:306–307

    PubMed  CAS  Google Scholar 

  • Wisser H, Breuer H (1981) Circadian changes of clinical chemical and endocrinological parameters. J Clin Chem Clin Biochem 19:323–337

    PubMed  CAS  Google Scholar 

  • Yates FE (1982) Outline of a physical theory of physiological systems. Can J Physiol Pharmacol 60:217–248

    PubMed  CAS  Google Scholar 

  • Yates FE, Garfinkel A, Walter DO, Yates GB (1987) Self-Organizing Systems: the Emergence of Order. Plenum Press, New York

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parfitt, A.M. (1993). Calcium Homeostasis. In: Physiology and Pharmacology of Bone. Handbook of Experimental Pharmacology, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77991-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77991-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77993-0

  • Online ISBN: 978-3-642-77991-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics