Skip to main content

Ultrasound and Infrasound

  • Chapter
Animal Acoustic Communication

Abstract

Ultrasound and infrasound differ from “ordinary” sounds in three distinct ways that influence all the considerations of this chapter. The first and most obvious characteristic of these sound types is that, by definition, they are “extreme” frequencies that fall outside the normal response curve for the human ear (see Figure 1) and are therefore inaudible. Ultrasound, which includes biologically significant sounds ranging from 15 kHz or so up to 200 kHz, is too high in frequency. Infrasound, effectively extending downwards from about 20 to 0.1 Hz or less, is too low in frequency. In both cases, therefore, it is necessary to use special instruments merely to detect the signals, which only increases the fascination of studying them. When the appropriate technology is applied, it becomes possible to observe phenomena that may be quite common among nonhuman species, but have previously been unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen BB, Miller LA (1977) A portable ultrasonic detection system for recording bat cries in the field. J Mammal 58:226–229

    Article  Google Scholar 

  • Arabadzhi VL (1990) Migration of birds and infrasound. Biofizika 35:361–362

    Google Scholar 

  • Ayler D (1971) Noise reduction by vegetation and pound. J Acoust Soc Am 51:197–205

    Article  Google Scholar 

  • Bazley EN (1976) Sound absorption in air at frequencies up to 100 kHz. Acoustics report AC74. National Physical Laboratories, Teddington, UK

    Google Scholar 

  • Bowman JJ, Senior TBA, Uslenghi PLE (eds) (1987) Electromagnetic and acoustic scattering by simple shapes. Radiation Laboratory, Univ Michigan, Ann Arbor

    Google Scholar 

  • Brown SG (1954) Dispersal in blue and fin whales. Discovery Rep 26:355–384

    Google Scholar 

  • Busnel RG, Fish JF (eds) (1980) Animal sonar systems. Plenum Press, New York

    Google Scholar 

  • Coles RB, Guppy A, Anderson ME, Schlegel P (1989) Frequency sensitivity and directional hearing in the gleaning bat,Plecotus auritus (Linnaeus 1758). J Comp Physiol A 165:269–280

    Article  PubMed  CAS  Google Scholar 

  • Dneprovskaya LA, Iofe VK, Levitas FI (1963) On the attenuation of sound as it propagates through the atmosphere. Sov Phys Acoust 8:235–239

    Google Scholar 

  • Evans JB, Bass HE (1972) Atmospheric absorption of sound as a function of frequency and relative humidity. Rep no WR 72–2, Wyle Laboratories, Huntsville, Alabama

    Google Scholar 

  • Eyring CF (1946) Jungle acoustics. J Acoust Soc Amer 18:257–270

    Article  Google Scholar 

  • Fenton MB (1985) Communication in the chiroptera. Indiana University Press, Bloomington

    Google Scholar 

  • Fletcher NH (1992) Acoustic systems in biology. Oxford University Press New York

    Google Scholar 

  • Fletcher NH, Thwaites S (1979) Physical models for the analysis of acoustical systems in biology. Q Rev Biophys 12:25–65

    Article  PubMed  CAS  Google Scholar 

  • Galton F (1883) Inquiries into human faculty and its development. Dent, London and Dutton, New York

    Google Scholar 

  • George JC, Clark C, Carroll GM, Ellison WT (1989) Observations on the ice-breaking and ice-navigation behavior of migrating bowhead whales (Balaena mysticetus). Arctic 42:24–30

    Google Scholar 

  • Griffin DR (1958) Listening in the dark. Yale Univ Press, New Haven; republ (1974) Dover Publications, NY; (1986) Comstock/Cornell Univ Press, Ithaca New York

    Google Scholar 

  • Griffin DR (1971) The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim Behav 19:55–61

    Article  PubMed  CAS  Google Scholar 

  • Hartley DJ, Suthers RA (1988) Directional emission and time precision as a function of target angle in the echolocating batCarolliaperspicillata. In: Nachtigall PE, Moore PWB (eds) Animal sonar: processes and performance. Plenum Press, New York

    Google Scholar 

  • Hartridge H (1920) The avoidance of objects by bats in their flight. J Physiol 54:54–57

    PubMed  CAS  Google Scholar 

  • Heffner SR, Heffher EH (1982) Hearing in the elephant(Elephas maximus): absolute sensitivity, frequency discrimination, and sound localization. J Comp Physiol Psychol 96:926–944

    Article  PubMed  CAS  Google Scholar 

  • Ingard U (1953) A review of the influence of meteorological conditions on sound propagation. J Acoust Soc Am 25:405–411

    Article  Google Scholar 

  • Jackson RR, Wilcox RS (1990) Aggressive mimicry, prey-specific predatory behaviour and predator—prey interactions ofProtia fimbriatta andEuryttus sp. jumping spiders from Queensland, Australia. Behav Ecol Sociobiol 26:111–120

    Article  Google Scholar 

  • Kreithen ML (1980) Detection of sound and vibration by birds. In: Proc 2nd Conference on Abnormal animal behavior. prior to earthquakes. Open file Rep 80–453, US Geol Surv, Menlo Park, California

    Google Scholar 

  • Kreithen ML (1983) Strategies of bird orientation: a tribute to WT Keeton. In: Aspey WP, Lustick SI (eds) Behavioral energetics: vertebrate costs of survival. Ohio State University Press, Columbus, p 3

    Google Scholar 

  • Kreithen ML, Keaton WT (1974) Detection of changes in atmospheric pressure by the homing pigeon,Columba livia. J Comp Physiol A 89:73–82

    Article  Google Scholar 

  • Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: a behavioral audiogram. J Comp Physiol A 129:1–4

    Article  Google Scholar 

  • Langbauer WR Jr, Charif R, Osborn F (in press) Transmission of low-frequency sound in three African environments and its relevance to long distance elephant communication. Behav Ecol Sociobiol (in press)

    Google Scholar 

  • Langbauer WL Jr, Payne K, Charif R, Rapaport L, Osborn F (1991) African elephants respond to distant playback of low-frequency calls. J Exp Biol 157:34–46

    Google Scholar 

  • Langbauer WL Jr, Powell SP, Martin R (in review) A radiotelemetry system for monitoring location and vocalizations of elephants. J Wildl Manage

    Google Scholar 

  • Lawrence BD, Simmons JA (1982) Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J Acoust Soc Am 71:585–590

    Article  PubMed  CAS  Google Scholar 

  • Lewis B (1983) Directional cues for auditory localization. In: Lewis B (ed) Bioacoustics: a comparative approach. Academic Press, London, NY, p 233–257

    Google Scholar 

  • Lubbock J (1879) Observations on the habits of ants, bees and wasps: VI Ants. J Linn Soc Lond Zool 14:607–626

    Article  Google Scholar 

  • Lutz FE (1924) Insect sounds. Bull Am Mus Nat Hist 50:333–372

    Google Scholar 

  • Maries K, Pye JD, Coppen D (1989) A microprocessor-controlled “memory” bat detector. In: Hanak V, Horacek I, Gaisler J (eds) European bat research 1987. Charles University Press, Prague, p 287–290

    Google Scholar 

  • Marten K, Marier P (1977) Sound transmission and its significance for animal vocalization I: temperate habitats. Behav Ecol Sociobiol 2:271–290

    Article  Google Scholar 

  • Marten K, Quine D, Marier P (1977) Sound transmission and its significance for animal vocalization II: tropical forest habitats. Behav Ecol Sociobiol 2:291–302

    Article  Google Scholar 

  • Maxim HS (1912) A new system for preventing collisions at sea. Cassel, London, NY (also see Sci Amer, July 27, 1912)

    Google Scholar 

  • Michelsen A (1978) Sound reception in different environments. In: Ali BA (ed) Perspectives in sensory ecology. Plenum, New York, p 345–373

    Google Scholar 

  • Montgomery HC (1932) Do our ears grow old? Bell Lab Rec 10:311–313

    Google Scholar 

  • Moss C, Poole JH (1983) Relationships and social structure of African elephants. In: Hinde R (ed) Primate social relationships: an integrated approach. Blackwell Scientific Publ Oxford, p 315–325

    Google Scholar 

  • Moss R, Lockie I (1979) Infrasonic components in the song of the capercaillie(Tetrao urogallus). Ibis 121:94–97

    Google Scholar 

  • Nachtigall PE, Moore PWB (eds)(1988) Animal sonar: processes and performance. Plenum Press, NY

    Google Scholar 

  • Neubauer WG (1986) Acoustic reflection from surfaces and shapes. Nav Res Lab, Washington, DC

    Google Scholar 

  • Packard A, Karlen HE, Sand O (1990) Low frequency hearing in cephalopods. J Comp Physiol A 166:501–505

    Article  Google Scholar 

  • Patterson B, Hamilton GR (1964) Repetitive 20 cycles per second biological hydroacoustic signal at Bermuda. In: Tavolga WN (ed) Marine bioacoustics: symposium at Lerner Marine Lab, 1963. Macmillan, New York

    Google Scholar 

  • Payne K, Langbauer WR Jr, Thomas E (1986) Infrasonic calls of the Asian elephant (Elephas maximus). Behav Ecol Sociobiol 18:297–301

    Article  Google Scholar 

  • Payne RS, Webb D (1971) Orientation by means of long-range acoustic signalling in baleen whales. In: Adler HE (ed) Orientation: sensory basis. Ann NY Acad Sci 188:110–141

    Google Scholar 

  • Pierce GW (1948) The songs of insects. Harvard University Press, Cambridge

    Google Scholar 

  • Pierce GW, Griffin DR (1938) Experimental determination of supersonic notes emitted by bats. J Mammal 19:454–455

    Article  Google Scholar 

  • Pollak GD (1993) Some comments on the proposed perception of phase and nanosecond time disparities by echolocating bats. J Comp Physiol A 172:523–531

    Article  PubMed  CAS  Google Scholar 

  • Poole JH, Payne K, Langbauer WR Jr, Moss C (1988) The social context of some very low-frequency calls of African elephants. Behav Ecol Sociobiol 22:385–392

    Article  Google Scholar 

  • Pye JD (1971) Bats and fog. Nature 229:572–574

    Article  PubMed  CAS  Google Scholar 

  • Pye JD (1979) Why ultrasound? Endeavour 3:57–62

    Article  Google Scholar 

  • Pye JD (1980) Echolocation signals and echoes in air. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, NY and London, p 309–353

    Google Scholar 

  • Pye JD (1983) Techniques for studying ultrasound. In: Lewis B (ed) Bioacoustics: a comparative approach. Academic Press, London, NY, p 39–65

    Google Scholar 

  • Pye JD (1988) Noseleaves and bat pulses. In: Nachtigall PE, Moore PWB (eds) Animal sonar: processes and performance. Plenum Press, NY and London, p 791–796

    Google Scholar 

  • Pye JD (1992) Equipment and techniques for the study of ultrasound in air. Bioacoustics 4:77–88

    Google Scholar 

  • Pye JD (1993) Is fidelity futile? The “true” signal is illusory, especially with ultrasound. Bioacoustics 4: 271–286

    Google Scholar 

  • Pye JD, Mutere FA (1985–6) Recording bat sounds by new techniques. Myotis 23/24:245–248

    Google Scholar 

  • Pye JD, Pye A (1988) Echolocation sounds and hearing in the fruit bat,Rousettus. In: Stephens SDG, Prasansuk S (eds) Measurement in hearing and balance, Karger, Basel Switzerland, p 1

    Google Scholar 

  • Rossing TD (1980) Physics and psychophysics of high-fidelity sound, part III. Physics Teach 18:426

    Article  Google Scholar 

  • Rossing TD (1983) The science of sound. Addison-Wesley, Reading, p 365

    Google Scholar 

  • Rydell J, Arlettaz R (1994) Low frequency echolocation enables the batTadarida teniotis to feed on tympanate insects. Proc Roy Soc B 257:175–178

    Article  CAS  Google Scholar 

  • Sales GD, Pye JD (1974) Ultrasonic communication by animals. Chapman and Hall, London

    Google Scholar 

  • Sand O, Karlsen HE (1986) Detection of infrasound by the Atlantic cod. J Exp Biol 125:197–204

    PubMed  CAS  Google Scholar 

  • Schermuly L, Klinke R (1990) Infrasound sensitive neurones in the pigeon cochlear ganglion. J Comp Physiol A 166:355–363

    Article  PubMed  CAS  Google Scholar 

  • Schevill WE, Watkins WA, Backus RH (1964) Underwater sounds of cetaceans. In: Tavolga WN (ed) Marine bioacoustics. Pergamon Press, New York, p 147

    Google Scholar 

  • Schnitzler HU, Grinnell AD (1977) Directional sensitivity of echolocation in the horseshoe bat,Rhinolophusferrumequinum, I. Directionality of sound emission. J Comp Physiol A 116:51–61

    Article  Google Scholar 

  • Silver SC, Halls JAT (1980) Recording the sounds of hydropsychid larvae — a cautionary tale. J Comp Physiol A 140:159–161

    Article  Google Scholar 

  • Simmons JA (1993) Evidence for perception of fine echo delay and phase by the FM bat,Eptesicus fuscus. J Comp Physiol A 172:533–47

    Article  PubMed  CAS  Google Scholar 

  • Surlikke A, Miller LA (1985) The influence of arctiid moth clicks on bat echolocation; jamming or warning? J Comp Physiol A 156:831–843

    Article  Google Scholar 

  • Theurich M, Langner G, Scheich H (1984) Infrasound responses in the midbrain of the Guinea fowl. Neurosci Lett 49:81–86

    Article  PubMed  CAS  Google Scholar 

  • Waser PM, Waser MS (1977) Experimental studies of primate vocalization: specializations for long-distance propagation. Z Tierpsychol 43:239–263

    Article  Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–94

    Article  Google Scholar 

  • Wiley RH, Richards DG (1982) Adaptations for acoustic communication in birds: sound transmission and signal detection. In: Kroodsma DE, Miller EH, Ouellet H (eds) Acoustic communication in birds. Vol 1. Academic Press, New York, p 131

    Google Scholar 

  • Wollaston WH (1820) On sounds inaudible by certain ears. Philos Trans R Soc Lond 110:306–314

    Article  Google Scholar 

  • Yager DD, Hoy RR (1989) The cyclopean ear: a new sense for the praying mantis. Science 231:649–772

    Google Scholar 

  • Zbinden K (1985–6) Echolocation pulse design in bats and dolphins. Myotis 23–24:195–200

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pye, J.D., Langbauer, W.R. (1998). Ultrasound and Infrasound. In: Hopp, S.L., Owren, M.J., Evans, C.S. (eds) Animal Acoustic Communication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76220-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76220-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76222-2

  • Online ISBN: 978-3-642-76220-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics