Skip to main content

Inherited Hepatic Enzyme Defects as Candidates for Liver-Directed Gene Therapy

  • Chapter
Hepadnaviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 168))

Abstract

There are a small number of inherited hepatic defects that are so devastating that virtually 100% of the affected infants either die or suffer severe developmental disability. For these defects, serious consideration must be given to any new treatment that offers the possibility of altering the extremely poor prognosis. In the desparate clinical setting of these single gene defects, two forms of therapy have recently been considered—hepatic transplantation and gene therapy. Here, I discuss two severe single gene disorders that might be candidates for such novel therapies, outline their natural histories, elaborate on the diagnostic tools available, and describe the result of hepatic transplantation in one case. I conclude that there remains a place for the development of cell or gene therapy for these severe disorders, speculate on potential strategies, and suggest that, if a safe and effective strategy could be developed, other less severe conditions of the liver could ultimately be considered for such therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arne PH, Houser ER, Thomas GH, Herman G, Hess D, Brusilow S (1990) Episodes of hyperam-monemic coma, often postpartum, occurring in women who have a mutation at the OTC locus: New Engl J Med 322: 1652–1655

    Article  Google Scholar 

  • Batshaw ML, Brusilow S, Waber L, Blom W, Brubakk AM, Burton BK, Can HM, Kerr D, Mamunes P, Matalon R, Myerberg D, Schafer IA (1982) Treatment of inborn errors of urea synthesis: activation of alternative pathways of waste nitrogen synthesis and excretion. N Engl J Med 306: 1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Brusilow SW, Horwich AL (1989) Urea cycle enzymes. In Scriver CL, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, pp 629–663

    Google Scholar 

  • Brusilow SW, Tinker J, Batshaw ML (1980) Amino acid acylation a mechanism of nitrogen excretion in inborn errors of urea synthesis. Science 207: 659–661

    Article  PubMed  CAS  Google Scholar 

  • Brusilow SW, Danney M, Waber LJ, Batshaw M, Burton B, Levitsky L, Roth K, McKeethren C, Ward J (1984) Treatment of episodic hyperammonemia in children with inborn errors of urea synthesis. N Engl J Med 310: 1630–1634

    Article  PubMed  CAS  Google Scholar 

  • Demetriou AA, Whiting JF, Feldman D, Levenson SM, Chowdhury NR, Moscion AD, Kram M, Chowdhury JR (1986) Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes. Science 233: 1190–1192

    Article  PubMed  CAS  Google Scholar 

  • Fox JE, Rosenberg LE (1988) Toward a molecular understanding of ornithine transcarbamylase deficiency. Adv Neurol 48: 71–81

    PubMed  CAS  Google Scholar 

  • Fox JE, Hack AM, Fenton WA, Golbus MS, Winter S, Kalousek F, Rozen R, Brusilow SW, Rosenberg LE (1986) Prenatal diagnosis of ornithine transcarbamylase deficiency with use of DNA polymorphisms. N Engl J Med 315: 1205–1208

    Article  PubMed  CAS  Google Scholar 

  • Grompe M, Muzny DM, Caskey CT (1989) Scanning detection of mutations in human ornithine transcarbamylase by chemical mismatch cleavage. Proc Natl Acad Sci USA 86: 5888–5892

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith LA, LaBerge C (1989) Tyrosinemia and related disorders. In Scriver CL, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn McGraw-Hill, New York, pp 556–562

    Google Scholar 

  • Haldane JBS (1935) The rate of spontaneous mutation of a human gene. J Genet 31: 317–326

    Article  Google Scholar 

  • Hata A, Tsuzuki T, Shimada K, Takiguchi M, Mori M, Matsuda I (1988) Structure of the human ornithine transcarbamylase gene. J Biochem (Tokyo) 103: 302–308

    CAS  Google Scholar 

  • Hata A, Setoyama C, Shimada K, Takeda E, Koruda Y, Akaboshi I, Matsuda I (1989) Ornithine transcarbamylase deficiency resulting from a C to T substitution in exon 5 of the ornithine transcarbamylase gene. Am J Hum Genet 45:123–127

    PubMed  CAS  Google Scholar 

  • Hirsch RC, Lavine JE, Chang LJ, Varmus HE, Ganem (1990) Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcription. Nature 344: 552–555

    Article  PubMed  CAS  Google Scholar 

  • Hodges PE, Rosenberg LE (1989) The spf-ash mouse a missense mutation in the ornithine transcarbamylase gene also causes aberrant mRNA splicing. Proc Natl Acad Sci USA 86:4142–4146

    Article  PubMed  CAS  Google Scholar 

  • Holzgreve W, Golbus MS (1984) Prenatal diagnosis of ornithine transcarbamylase deficiency utilizing fetal liver biopsy. Am J Hum Genet 36: 320–328

    PubMed  CAS  Google Scholar 

  • Horwich AL, Fenton WA, Williams KR, Kalousek F, Kraus JP, Doolittle RF, Konigsberg W, Rosenberg LE (1984) Structure and expression of a complementary DNA for the nuclear coded precursor of human mitochondrial ornithine transcarbamylase. Science 224: 1068–1074

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL, Furtak K, Pugh J, Summers J (1990) Synthesis of hepadnavirus particles that contain replication-defective duck hepatitis B virus genomes in cultured HuH7 cells. J Virol 64: 642–650

    PubMed  CAS  Google Scholar 

  • Houser ER, Finkeistein JE, Valle D, Brusilow S (1990) Allopurinol-induced orotidinuria a test for mutations at the ornithine transcarbamylase locus in women. N Engl J Med 322: 1641–1645.

    Article  Google Scholar 

  • Ledley FD, Darlington GJ, Tahn T, Woo SLC (1987) Retroviral gene transfer into primary hepatocytes: implications for genetic therapy of liver-specific functions. Proc Natl Acad Sci USA 84: 5335–5339

    Article  PubMed  CAS  Google Scholar 

  • Lindgren V, deMartinville B, Horwich AL, Rosenberg LE, Francke U (1984) Human ornithine transcarbamylase locus mapped to band Xp21.1 near the Duchenne muscular dystrophy locus. Science 226: 698–700

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (mus musculus). Nature 190: 372–373

    Article  PubMed  CAS  Google Scholar 

  • Maddalena A, Spence JE, O’Brien WE, Nussbaum RL (1988) Characterization of point mutations in the same arginine codon in three unrelated patients with ornithine transcarbamylase deficiency. J Clin Invest 82: 1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Matas AJ, Sutherland DER, Steffes MW, Mauer SM, Lowe A, Simmons L, Najarian JS (1976) Hepatocellular transplantation for metabolic deficiencies: decrease of plasma bilirubin in Gunn rats. Science 192: 892–894

    Article  PubMed  CAS  Google Scholar 

  • Mitchell G, LaRochelle J, Lambert M, Michaud J, Grenier A, Ogier, Gauthier M, LaCroix J, Vanasse M, Larbrisseau A, Paradis K, Weber A, Lefevr Y, Melancon S, Dallaire L (1990) Neurologic crises in hereditary tyrosinemia. N Engl J Med 322: 432–437

    Article  PubMed  CAS  Google Scholar 

  • Nicole LM, Valet JP, LaBerge C, Tanguay RM (1986) Purification of mRNA coding for the enzyme deficient in hereditary tyrosinemia, fumarylacetoacetate hydrolase. Biochem Cell 64: 489–

    Article  CAS  Google Scholar 

  • Niepmann M, Schaller H (1989) The precore/core region of hepatitis B virus RNA pregenome contains the signal for pregenome encapsidation. Hepatitis B viruses abstracts. Cold Spring Harbor Laboratory, Cold Spring Harbor, p 11

    Google Scholar 

  • Petti BR, MacKenzie F, King GS (1984) The antenatal diagnosis and aid to the management of hereditary tyrosinemia by use of a specific and sensitive GC-MS assay for succinylacetone. J. inherited Metab Dis [Suppl] 2: 135–136

    Google Scholar 

  • Rozen R, Fox J, Fenton WA, Horwich AL, Rosenberg LE (1985) Gene deletion and restriction fragment polymorphisms at the human ornithine transcarbamylase locus. Nature 313: 815–817

    Article  PubMed  CAS  Google Scholar 

  • Rutledge SL, Havens PL, Haymond MW, McLean RH, Kan JS, Brusilow SW (1990) Neonatal hemodialysis: effective therapy for the encephalopathy of inborn errors of metabolism. J Pediatr 116: 125–128

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR et al (1989) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Spence JE, Maddalena A, O’Brien WE, Fernbach SD, Batshaw ML, Leonard CO, Beaudet AL (1989) Prenatal diagnosis and heterozygote detection by DNA analysis in ornithine transcarbamylase deficiency. J Pediatr 114: 582–588

    Article  PubMed  CAS  Google Scholar 

  • Summers J, Smith PM, Horwich AL (1990) Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. J Virol 64: 2819–2824

    PubMed  CAS  Google Scholar 

  • Veres G, Gibbs RA, Scherer SE, Caskey CT (1987) The molecular basis of the sparse fur mouse mutation. Science 237: 415–417

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM, Jefferson DM, Choudhury J, Novikoff PM, Johnston DE, Mulligan RC (1988) Retrovirus mediated transduction of adult hepatocytes. Proc Natl Acad Sci USA 85: 3014–3018

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM, Choudhury NR, Grossman M, Wajsman R, Epstern A, Mulligan RC, Choudhury JR Temporary amelioration of hyperlipidemia in low density lipoprotein receptor-deficient rabbits transplanted with genetically modified hepatocytes. Proc Natl Acad Sci USA 87: 8437–8441

    Google Scholar 

  • Wolff JA, Yee J-K, Skelly HF, Moores JC, Respess JG, Friedman T, Leffert H (1987) Expression of retrovirally transduced genes in primary cultures of adult rat hepatocytes. Proc Natl Acad Sci USA 84: 3344–3348

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Wilson JM, Wu GY (1989) Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J Biol Chem 264: 16985–16987

    PubMed  CAS  Google Scholar 

  • Yokode M, Hammer RE, Ishibashi S, Brown MS, Goldstein JL (1990) Science 250: 1273–1275

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin·Heidelberg

About this chapter

Cite this chapter

Horwich, A.L. (1991). Inherited Hepatic Enzyme Defects as Candidates for Liver-Directed Gene Therapy. In: Mason, W.S., Seeger, C. (eds) Hepadnaviruses. Current Topics in Microbiology and Immunology, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76015-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76015-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76017-4

  • Online ISBN: 978-3-642-76015-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics