Skip to main content

Biochemical Manipulation of the Microenvironment in Experimental Nerve Regeneration Chambers

  • Conference paper
Peripheral Nerve Lesions

Abstract

Despite improved microsurgical techniques, the results of peripheral nerve repair very often remain unsatisfactory [1–4]. Therefore, studies aimed at a better identification and potential manipulation of the cellular and molecular events in PNS regeneration are still meaningful to both scientists and clinicians [5].

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (Mu 699/1-2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Müller H (1978) Dokumentation und Analyse klinischer Resultate nach Nervennähten. Doct. Thesis. University of Hamburg.

    Google Scholar 

  2. Müller H, Grubel G (1981) Long-term results of peripheral nerve sutures — a comparison of micro-and macrosurgical techniques. Adv Neurosurg 9:381–387.

    Article  Google Scholar 

  3. Müller H, Grubel G (1982) Periphere Nervenverletzungen: Indikation und Ergebnisse der frühen Sekundärversorgung. Hefte Unfallheilkd 158:453–459.

    PubMed  Google Scholar 

  4. Müller H, Grubel G (1983) Factors influencing peripheral nerve suture results. Arch Orthop Trauma Surg 102:51–55.

    Article  PubMed  Google Scholar 

  5. Lundborg G (1988) Nerve injury and repair. Churchill Livingstone, New York.

    Google Scholar 

  6. Lundborg G, Gelberman RH, Longo FM, Powell HC, Varon S (1982) In vivo regeneration of cut nerves encased in silicone tubes. J Neuropath Exp Neurol 41:412–422.

    Article  PubMed  CAS  Google Scholar 

  7. Lundborg G, Dahlin LB, Danielsen N, Gelberman RH, Longo FM, Powell HC, Varon S (1982) Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp Neurol 76:361–375.

    Article  PubMed  CAS  Google Scholar 

  8. Lundborg G, Longo FM, Varon S (1982) Nerve regeneration model and trophic factors in vivo. Brain Res 232:157–161.

    Article  PubMed  CAS  Google Scholar 

  9. Weiss P (1944) Sutureless reunion of severed nerves with elastic cuffs of tantalum. J Neurosurg 1:219–225.

    Article  Google Scholar 

  10. Weiss P (1944) The technology of nerve regeneration: a review. Sutureless tubulation and related methods of nerve repair. J Neurosurg 1:400–450.

    Article  Google Scholar 

  11. Campbell JB, Bassett CAL, Husby J, Thulin CA, Feringa ER (1961) Microfilter sheaths in peripheral nerve surgery. J Trauma 1:139–155.

    Article  Google Scholar 

  12. Kline DG, Hayes GJ (1964) The use of a resorbable wrapper for peripheral-nerve repair. Experimental studies in chimpanzees. J Neurosurg 21:737–750.

    Article  PubMed  CAS  Google Scholar 

  13. Lehmann RAW, Hayes GJ (1967) Degeneration and regeneration in peripheral nerve. Brain 90y:285–296.

    Article  Google Scholar 

  14. Midgley RD, Woolhouse FM (1968) Silastic sheating technique for the anastomoses of nerves and tendons. Canad Med Ass J 98:550–551.

    PubMed  CAS  Google Scholar 

  15. Williams LR, Longo FM, Powell HC, Lundborg G, Varon S (1983) Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J Comp Neurol 218:460–470.

    Article  PubMed  CAS  Google Scholar 

  16. Williams LR, Müller H, Margolin L, Varon S (1985) The rat as a model for the study of peripheral nerve regeneration within a silicone chamber. Abstract. 36th Ann Bess Amer Assoc Lab Animal Sci, Baltimore.

    Google Scholar 

  17. Müller H, Shibib K, Friedrich H, Modrack M (1987) Evoked muscle action potentials from regenerated rat tibial and peroneal nerves: synthetic versus autologous interfascicular grafts. Exp Neurol 95:21–33.

    Article  PubMed  Google Scholar 

  18. Müller H, Shibib K, Modrack M, Friedrich H (1987) Nerve regeneration in synthetic and autologous interfascicular grafts. II. Morphometric analysis. Exp Neurol 98:1, p 161-169.

    Article  Google Scholar 

  19. Jenq CB, Coggeshall RE (1986) The effects of an autologous transplant on patterns of regeneration in rat sciatic nerve. Brain Res 364:45–56.

    Article  PubMed  CAS  Google Scholar 

  20. Molander H, Engkvist O, Haaglund J, Olsson Y, Torebjörk E (1983) Nerve repair using a polyglactin tube and nerve graft: an experimental study in the rabbit. Biomaterials 4:276–280.

    Article  PubMed  CAS  Google Scholar 

  21. Longo FM, Skaper SD, Manthorpe M, Williams LR, Lundborg G, Varon S (1983) Temporal changes of neuronotrophic activities accumulating in vivo within nerve regeneration chambers. Exp Neurol 81:756–769.

    Article  PubMed  CAS  Google Scholar 

  22. Longe FM, Hayman EG, Davis GE, Ruoslahti E, Engvall E, Manthorpe M, Varon S (1984) Neurite-promoting factors and extracellular matrix components accumulating in vivo within nerve regeneration chambers. Brain Res 309:105–117.

    Article  Google Scholar 

  23. Williams LR, Varon S (1985) Modification of vibrin matrix formation in situ enhances nerve regeneration in silicone chambers. J Comp Neurol 231:209–220.

    Article  PubMed  CAS  Google Scholar 

  24. Williams LR, Danielsen N, Müller H, Varon S (1987) Exogenous matrix precursors promote functional nerve regeneration across a 15 mm gap within a silicone chamber in the rat. J Comp Neurol 231.

    Google Scholar 

  25. Müller H, Williams LR, Varon S (1987) Nerve regeneration chamber: evaluation of exogenous agents applied by multiple injections. Brain Res 413:320–326.

    Article  PubMed  Google Scholar 

  26. Davis G, Manthorpe M, Engvall E, Varon S (1985) Isolation and characterization of rat schwannoma neurite-promoting factor: evidence that the factor contains laminin. J Neurosci 5:2662–2671.

    PubMed  CAS  Google Scholar 

  27. Ide C, Tohyama K, Yokota R, Nitatori T, Onodera S (1983) Schwann cell basal lamina and nerve regeneration. Brain Res 288:61–75.

    Article  PubMed  CAS  Google Scholar 

  28. Manthorpe M, Engvall E, Ruoslahti E, Longo FM, Davis GE, Varon S (1983) Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J Cell Biol 97:1882–1890.

    Article  PubMed  CAS  Google Scholar 

  29. Madison R, Silva CF da, Dikkes P, Sidman RL, Chiu TH (1985) Increased rate of peripheral nerve regeneration using bioresorbable nerve guides and a laminin-containing gel. Exp Neurol 88:767–772.

    Article  PubMed  CAS  Google Scholar 

  30. Patterson PH (1985) On the role of proteases, their inhibitors and the extracellular matrix in promoting neurite outgrowth. J de Physiol 80:207–211.

    CAS  Google Scholar 

  31. Lander AD, Fujii DK, Gospodarowisz D, Reichardt LF (1984) Neurite outgrowthpromoting factors in conditioned media are complexes containing laminin. Abstract. Soc Neurosci 10:1614.

    Google Scholar 

  32. Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR (1979) Laminin — a glycoprotein from basement membranes. J Biol Chem 254:9933–9937.

    PubMed  CAS  Google Scholar 

  33. Hannouche N, Samperez S, Jouan P (1980) Accumulation of 5 alpha-dihydrotestosterone in purified plasma membranes and in the myelin of male rat hypothalamus. CR Soc Biol 174:963–968.

    CAS  Google Scholar 

  34. Sar M, Stumpf WE (1977) Androgen concentration in motor neurons of cranial nerves and spinal cord. Science 197:77–79.

    Article  PubMed  CAS  Google Scholar 

  35. Snyder EY, Kim SU (1979) Hormonal requirements for neuronal survival in culture. Neurosci Lett 13:225–230.

    Article  PubMed  CAS  Google Scholar 

  36. Yu WHA (1982) Effect of testosterone on the regeneration of the hypoglossal nerve in rats. Exp Neurol 77:129–141.

    Article  PubMed  CAS  Google Scholar 

  37. Facci L, Leon A, Toffano G, Sonino S, Ghidoni R, Tettamanti G (1984) Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem 42:299–305.

    Article  PubMed  CAS  Google Scholar 

  38. Ferrari G, Fabris M, Gorio G (1983) Gangliosides enhance neurite outgrowth in PC 12 cells. Dev Brain Res 8:215–222.

    Article  CAS  Google Scholar 

  39. Gorio A, Carmignoto G, Facci L, Finesso M (1980) Motor nerve sprouting induced by ganglioside treatment. Possible implications for gangliosides on neuronal growth. Brain Res 197:236–241.

    Article  PubMed  CAS  Google Scholar 

  40. Gorio A, Marini P, Zanoni R (1984) Muscle reinnervation. III. Motoneuron sprouting capacity, enhancement by exogenous gangliosides. Neuroscience 8:417–429.

    Article  Google Scholar 

  41. Katoh-Semba R, Skaper SD, Varon S (1984) Interaction of GM1 ganglioside with PC 12 pheochromocytoma cells: serum-and NGF-dependent effects on neurite growth (and proliferation). J Neurosci Res 12:299–310.

    Article  PubMed  CAS  Google Scholar 

  42. Skaper SD, Katoh-Semba R, Varon S (1985) GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions. Dev Brain Res 23:19–26.

    Article  CAS  Google Scholar 

  43. Walicke P, Varon S, Manthorpe M (1986) Purification of a human red blood cell protein supporting the survival of cultured CNS neurons, and its identification as catalase. J Neurosci 6:1114–1121.

    PubMed  CAS  Google Scholar 

  44. Müller H (1988) Further evaluation of the effects of laminin, testosterone, ganglioside GM1, and catalase on early growth in rat nerve regeneration chambers. Exp Neurol 101:2, p 228-233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, H. (1990). Biochemical Manipulation of the Microenvironment in Experimental Nerve Regeneration Chambers. In: Samii, M. (eds) Peripheral Nerve Lesions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75611-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75611-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75613-9

  • Online ISBN: 978-3-642-75611-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics