Skip to main content

Peripheral Nerve Tissue Engineering: An Outlook on Experimental Concepts

  • Chapter
  • First Online:
Modern Concepts of Peripheral Nerve Repair

Abstract

The following paragraphs present a compressed overview of the latest developments in peripheral nerve tissue engineering and the main concepts underlying innovative approaches. Since several excellent review articles have been published recently and especially the biomaterial field is frequently bringing up novel developments, the reader with a deeper interest is referred to the specific literature cited in this chapter for more comprehensive information.

This chapter further provides insight in what is important to be considered for the development of novel nerve guidance channels and tissue-engineered nerve implants specifically. In addition, the potential reasons for a rather slow translation of novel approaches into a clinical use are addressed. This chapter concludes with a discussion of experimental evaluation techniques that can be judged as appropriate and comprehensive for preclinical studies on peripheral nerve regeneration and peripheral nerve tissue engineering.

Illustrations: Lena Julie Freund, MSc Animal Biology and Biomedical Science, Aachen, Germany

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angius D, et al. A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials. 2012;33:8034–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Belkas JS, et al. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004;26:151–60.

    Article  PubMed  Google Scholar 

  3. Boecker AH, et al. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model. Eur J Neurosci. 2016;43:404–16.

    Article  PubMed  Google Scholar 

  4. Bozkurt A, et al. Efficient bridging of 20 mm rat sciatic nerve lesions with a longitudinally micro-structured collagen scaffold. Biomaterials. 2016;75:112–22.

    Article  CAS  PubMed  Google Scholar 

  5. Bozkurt A, et al. The proximal medial sural nerve biopsy model: a standardised and reproducible baseline clinical model for the translational evaluation of bioengineered nerve guides. Biomed Res Int. 2014;2014:121452.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brushart TM. Outcomes of experimental nerve repair and grafting. In: Brushart TM, editor. Nerve repair. New York: Oxford University Press; 2011. p. 159–95.

    Chapter  Google Scholar 

  7. Casella GT, et al. Improved method for harvesting human Schwann cells from mature peripheral nerve and expansion in vitro. Glia. 1996;17:327–38.

    Article  CAS  PubMed  Google Scholar 

  8. Chen P, et al. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130:605–18.

    Article  CAS  PubMed  Google Scholar 

  9. Dahlin LB. The role of timing in nerve reconstruction. Int Rev Neurobiol. 2013;109:151–64.

    Article  PubMed  Google Scholar 

  10. Daly W, et al. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface. 2012;9:202–21.

    Article  CAS  PubMed  Google Scholar 

  11. Deumens R, et al. Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol. 2010;92:245–76.

    Article  PubMed  Google Scholar 

  12. Duda S, et al. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides. Biomed Res Int. 2014;2014:835269.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ezra M, et al. Porous and nonporous nerve conduits: the effects of a hydrogel luminal filler with and without a neurite-promoting moiety. Tissue Eng Part A. 2016;22:818–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Faroni A, et al. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev. 2015;82-83:160–7.

    Article  CAS  PubMed  Google Scholar 

  15. Faroni A, et al. Adipose-derived stem cells and nerve regeneration: promises and pitfalls. Int Rev Neurobiol. 2013;108:121–36.

    Article  CAS  PubMed  Google Scholar 

  16. Freier T, et al. Biodegradable polymers in neural tissue engineering. In: Mallapragada S, Narasimhan B, editors. Handbook of biodegradable polymeric materials and their applications. Stevenson Ranch: American Scientific Publishers; 2005. p. 1–49.

    Google Scholar 

  17. Gerardo-Nava J, et al. Spinal cord organotypic slice cultures for the study of regenerating motor axon interactions with 3D scaffolds. Biomaterials. 2014;35:4288–96.

    Article  CAS  PubMed  Google Scholar 

  18. Geuna S. The sciatic nerve injury model in pre-clinical research. J Neurosci Methods. 2015;243:39–46.

    Article  PubMed  Google Scholar 

  19. Geuna S, et al. In vitro models for peripheral nerve regeneration. Eur J Neurosci. 2016;43:287–96.

    Article  CAS  PubMed  Google Scholar 

  20. Gnavi S, et al. The use of chitosan-based scaffolds to enhance regeneration in the nervous system. Int Rev Neurobiol. 2013;109C:1–62.

    Article  Google Scholar 

  21. Gonzalez-Perez F, et al. Extracellular matrix components in peripheral nerve regeneration. Int Rev Neurobiol. 2013;108:257–75.

    Article  CAS  PubMed  Google Scholar 

  22. Gu X, et al. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35:6143–56.

    Article  CAS  PubMed  Google Scholar 

  23. Gu X, et al. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol. 2011;93:204–30.

    Article  CAS  PubMed  Google Scholar 

  24. Haastert-Talini K, et al. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials. 2013;34:9886–904.

    Article  CAS  PubMed  Google Scholar 

  25. Haastert K, et al. Human and rat adult Schwann cell cultures: fast and efficient enrichment and highly effective non-viral transfection protocol. Nat Protoc. 2007;2:99–104.

    Article  CAS  PubMed  Google Scholar 

  26. Heinen A, et al. Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype. Exp Neurol. 2015;271:25–35.

    Article  CAS  PubMed  Google Scholar 

  27. Hodde D, et al. Characterisation of cell-substrate interactions between Schwann cells and three-dimensional fibrin hydrogels containing orientated nanofibre topographical cues. Eur J Neurosci. 2016;43:376–87.

    Article  PubMed  Google Scholar 

  28. Jager SB, et al. The mouse median nerve experimental model in regenerative research. Biomed Res Int. 2014;2014:701682.

    PubMed  Google Scholar 

  29. Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016;594:3521–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang X, et al. Current applications and future perspectives of artificial nerve conduits. Exp Neurol. 2010;223:86–101.

    Article  PubMed  Google Scholar 

  31. Keilhoff G, et al. Neuroma: a donor-age independent source of human Schwann cells for tissue engineered nerve grafts. Neuroreport. 2000;11:3805–9.

    Article  CAS  PubMed  Google Scholar 

  32. Khuong HT, et al. Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair. Exp Neurol. 2014;254:168–79.

    Article  CAS  PubMed  Google Scholar 

  33. Klimaschewski L, et al. The pros and cons of growth factors and cytokines in peripheral axon regeneration. Int Rev Neurobiol. 2013;108:137–71.

    Article  CAS  PubMed  Google Scholar 

  34. Levi AD, et al. The use of autologous schwann cells to supplement sciatic nerve repair with a large gap: first in human experience. Cell Transplant. 2016;25:1395–403.

    Article  PubMed  Google Scholar 

  35. Marquardt LM, Sakiyama-Elbert SE. Engineering peripheral nerve repair. Curr Opin Biotechnol. 2013;24:887–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McWhorter FY, et al. Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci. 2015;72:1303–16.

    Article  CAS  PubMed  Google Scholar 

  37. Meyer C, et al. Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials. 2016a;76:33–51.

    Article  CAS  PubMed  Google Scholar 

  38. Meyer C, et al. Peripheral nerve regeneration through hydrogel-enriched chitosan conduits containing engineered Schwann cells for drug delivery. Cell Transplant. 2016b;25:159–82.

    Article  PubMed  Google Scholar 

  39. Mobasseri A, et al. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration. Tissue Eng Part A. 2015;21:1152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mokarram N, Bellamkonda RV. A perspective on immunomodulation and tissue repair. Ann Biomed Eng. 2014;42:338–51.

    Article  PubMed  Google Scholar 

  41. Mokarram N, et al. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials. 2012;33:8793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Monte-Raso VV, et al. Is the Sciatic Function Index always reliable and reproducible? J Neurosci Methods. 2008;170:255–61.

    Article  PubMed  Google Scholar 

  43. Morano M, et al. Nanotechnology versus stem cell engineering: in vitro comparison of neurite inductive potentials. Int J Nanomedicine. 2014;9:5289–306.

    PubMed  PubMed Central  Google Scholar 

  44. Navarro X. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview. Eur J Neurosci. 2016;43:271–86.

    Article  PubMed  Google Scholar 

  45. Oliveira JT, et al. Bone marrow mesenchymal stem cell transplantation for improving nerve regeneration. Int Rev Neurobiol. 2013;108:59–77.

    Article  CAS  PubMed  Google Scholar 

  46. Rajaram A, et al. Strategic design and recent fabrication techniques for bioengineered tissue scaffolds to improve peripheral nerve regeneration. Tissue Eng Part B Rev. 2012;18:454–67.

    Article  CAS  PubMed  Google Scholar 

  47. Ribeiro J, et al. Perspectives of employing mesenchymal stem cells from the Wharton's jelly of the umbilical cord for peripheral nerve repair. Int Rev Neurobiol. 2013;108:79–120.

    Article  CAS  PubMed  Google Scholar 

  48. Rutkowski JL, et al. Purification and expansion of human Schwann cells in vitro. Nat Med. 1995;1:80–3.

    Article  CAS  PubMed  Google Scholar 

  49. Schiefer JL, et al. Comparison of short- with long-term regeneration results after digital nerve reconstruction with muscle-in-vein conduits. Neural Regen Res. 2015;10:1674–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Stenberg L, Dahlin LB. Gender differences in nerve regeneration after sciatic nerve injury and repair in healthy and in type 2 diabetic Goto-Kakizaki rats. BMC Neurosci. 2014;15:107.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stenberg L, et al. Nerve regeneration in chitosan conduits and in autologous nerve grafts in healthy and in type 2 diabetic Goto-Kakizaki rats. Eur J Neurosci. 2016;43:463–73.

    Article  PubMed  Google Scholar 

  52. Stenberg L, Stössel M, et al. submitted. Regeneration of long-distance peripheral nerve defects after delayed reconstruction in healthy and diabetic rats is supported by immunomodulatory chitosan nerve guides.

    Google Scholar 

  53. Stratton JA, Shah PT. Macrophage polarization in nerve injury: do Schwann cells play a role? Neural Regen Res. 2016;11:53–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Szynkaruk M, et al. Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. Tissue Eng Part B Rev. 2013;19:83–96.

    Article  CAS  PubMed  Google Scholar 

  55. Tajdaran K, et al. An engineered biocompatible drug delivery system enhances nerve regeneration after delayed repair. J Biomed Mater Res A. 2016;104:367–76.

    Article  CAS  PubMed  Google Scholar 

  56. Vyas A, et al. An in vitro model of adult mammalian nerve repair. Exp Neurol. 2010;223:112–8.

    Article  CAS  PubMed  Google Scholar 

  57. Williams LR, et al. Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J Comp Neurol. 1983;218:460–70.

    Article  CAS  PubMed  Google Scholar 

  58. Ziv-Polat O, et al. The role of neurotrophic factors conjugated to iron oxide nanoparticles in peripheral nerve regeneration: in vitro studies. Biomed Res Int. 2014;2014:267808.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Haastert-Talini Dr. med. vet. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Haastert-Talini, K. (2017). Peripheral Nerve Tissue Engineering: An Outlook on Experimental Concepts. In: Haastert-Talini, K., Assmus, H., Antoniadis, G. (eds) Modern Concepts of Peripheral Nerve Repair. Springer, Cham. https://doi.org/10.1007/978-3-319-52319-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52319-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52318-7

  • Online ISBN: 978-3-319-52319-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics