Skip to main content

Nucleotide Sequence Analysis of Conserved Genes from Bacteria

  • Conference paper
Conceptual and Numerical Analysis of Data

Abstract

A deductive approach has to be chosen to resolve the phylogenetic relationships of prokaryotes since they lack the ontogeny and fossil records of higher organisms. It should be possible by comparative analyses of homologous macromolecules that are universally distributed among organisms, show a high degree of functional constancy and are sufficiently conserved to span the full evolutionary spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Woese CR Bacterial evolution 1987, Microbiol Rev 51: 221–271

    Google Scholar 

  2. Cedergren R, Gray MW, von Abel Y, Sankoff D The evolutionary relationships among known life forms 1988, J Mol Evol 28: 98–112

    Article  Google Scholar 

  3. Lake, JA Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences 1988, Nature 331: 184–186

    Article  Google Scholar 

  4. Leffers H, Kjems J, Ostergaard L, Larsen N, Garrett RA Evolutionary relationships amongst archaebacteria. A comparative study of 23S ribosomal RNAs of a sulphur- dependent extreme thermophile, an extreme halophile and a thermophilic methanogen 1987, J Mol Biol 195: 43–61

    Article  Google Scholar 

  5. Fitch WM, Margoliash E Construction of phylogenetic trees 1967, Science 155: 279–284

    Article  Google Scholar 

  6. Ohama T, Yamao F, Muto A, Osawa S Organization and codon usage of the streptomycin operon in Micrococcus luteus, a bacterium with a high genomic G+C content 1987, J Bacteriol 169: 4770–4777

    Google Scholar 

  7. Seidler L, Peter M, Meissner F, Sprinzl M Sequence and identification of the nucleotide binding site for the elongation factor Tu from Thermus thermophilus HB8 1987, Nucl Acids Res 15: 9263–9276

    Article  Google Scholar 

  8. Kushiro A, Shimizu M, Tomita K Molecular cloning and sequence determination of the tuf gene coding for the elongation factor Tu of Thermus thermophilus HB8 1987, Eur J Biochem 170: 93–98

    Article  Google Scholar 

  9. Felsenstein J Phylogenies from molecular sequences inference and reliability 1988, Ann Rev Genet 22: 521–65

    Article  Google Scholar 

  10. Lechner M, Böck A Cloning and nucleotide sequence of an archaebacterial protein synthesis elongation factor Tu 1987, Mol Gen Genet 208: 523–528

    Article  Google Scholar 

  11. Futai M, Kanazawa H Structure and function of proton- translocating adenosine triphosphatase (F F): Biochemi- cal and molecular biological approaches 1983, Microbiol Rev 47: 285–312

    Google Scholar 

  12. Amann R, Sostak P, Ludwig W, Schleifer KH Cloning and sequencing of genes encoding the beta subunits of the ATP synthases from Enterobacter aerogenes and Flavobacterium ferrugineum 1988, FEMS Microbiol Letters 50: 101–106

    Article  Google Scholar 

  13. Amann R, Ludwig W, Schleifer KH β-subunit of ATP-synthase: A useful marker for studying phylogenetic relationship of eubacteria 1988, J gen Microbiol 134: 2815–2821

    Google Scholar 

  14. Curtis SE Genes encoding the a and subunits of the proton- translocating ATPase from Anabaena spec strain PCC 7120 1987, J Bacteriol 169: 80–86

    Google Scholar 

  15. Kanazawa H, Kayoub T, Kiyasu T, Putai M Nucleotide sequence of the genes for β and ε subunits of proton-translocating ATPase from Escherichia coli 1982, Biochem Biophys Res Commun 105: 1257–1264

    Article  Google Scholar 

  16. Tybulewicz VLJ, Falk G, Walker JE Rhodopseudomonas blastica atp operon. Nucleotide sequence and transcription 1984, J Mol Biol 179: 185–214

    Article  Google Scholar 

  17. Falk G, Hampe A, Walker JE Nucleotide sequence of the Rhodospirillum rubrum atp operon 1985, Biochem J 228: 391–407

    Google Scholar 

  18. Cozeus AL, Walker JE The organization and sequence of the genes for the ATP synthase subunits of the cyanobacterium Synechococcus 6301 1987, J Mol Biol 194: 359–383

    Article  Google Scholar 

  19. Kagawa Y, Ishizuka M, Saisira T, Nakao S Stable structure of thermophilic proton ATPase beta subunit 1986, J Biochem 100: 923–934

    Google Scholar 

  20. Pasteur BJ, Ludwig W, Weisburg WG, Stackebrandt E, Hespell RB, Hahn CM, Reichenbach M, Stetter KO, Woese CR A phylogenetic grouping of the bacteroides, cytophagas and certain flavobacteria 1985, Syst Appl Microbiol 6: 34–42

    Google Scholar 

  21. Weisburg WG, Oyaizu Y, Oyaizu H, Woese CR Natural relationship between bacteroides and flavobacteria 1985, J Bacteriol 164: 230–236

    Google Scholar 

  22. Amann R, Ludwig W, Laubinger W, Dimroth P, Schleifer KH Cloning and sequencing of the gene encoding the beta subunit of the sodium ion translocating ATP synthase of Propionigenium modestum 1988, FEMS Microbiol Lett 56: 253–260

    Article  Google Scholar 

  23. Laubinger W, Dimroth P Characterization of the Na±stimulated ATPase as an enzyme of the F0 F1 type 1987, Eur J Biochem 168: 475–480

    Article  Google Scholar 

  24. Zimniak L, Dittrich P, Gogarten JP, Kibak M, Taizl The cDNA sequence of the 69-kDa subunit of the carrot vacuo lar H±ATPase. Homology to the β-chain of F0 F1 — ATPases 1988, J Biol Chem 263: 9102–9112

    Google Scholar 

  25. Denda K, Konishi J, Oshima T, Date T, Yoshida M The membrane associated ATPase from Sulfolobus acidocaldaricus is distantly related to F1 -ATPase as assessed from the primary structure of its α-subunit 1988, J Biol Chem 263: 6012–6015

    Google Scholar 

  26. Gutell RR, Fox GE A compilation of large subunit RNA sequences presented in a structural format 1988, Nucl Acids Res Sequences Suppl. 16: r175–r269

    Google Scholar 

  27. Regensburger A, Ludwig W, Frank R, Blöcker H, Schleifer KH Complete nucleotide sequence of a 23S ribosomal RNA gene from Micrococcus luteus 1988, Nucl Acids Res 16: 2344

    Article  Google Scholar 

  28. Liesack W, Höpfl P, Stackebrandt E Complete nucleotide sequence of a 23S ribosomal RNA gene from Pirellula marina 1988, Nucl Acids Res 16: 5194

    Article  Google Scholar 

  29. Höpfl P, Ludwig W, Schleifer KH Complete nucleotide sequence of a 23S ribosomal RNA gene from Rhodobacter capsulatus 1988, Nucl Acids Res 16: 2343

    Article  Google Scholar 

  30. Spiegl H, Ludwig W, Schleifer KH, Stackebrandt E Complete nucleotide sequence of a 23S ribosomal RNA gene from Ruminobacter amylophilus 1988, Nucl Acids Res 16: 2345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Ludwig, W., Schleifer, K.H. (1989). Nucleotide Sequence Analysis of Conserved Genes from Bacteria. In: Optiz, O. (eds) Conceptual and Numerical Analysis of Data. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75040-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75040-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51641-5

  • Online ISBN: 978-3-642-75040-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics