Skip to main content
Log in

The evolutionary relationships among known life forms

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Sequences of small subunit (SSU) and large subunit (LSU) ribosomal RNA genes from archaebacteria, eubacteria, and the nucleus, chloroplasts, and mitochondria of eukaryotes have been compared in order to identify the most conservative positions. Aligned sets of these positions for both SSU and LSU rRNA have been used to generate tree diagrams relating the source organisms/organelles. Branching patterns were evaluated using the statistical bootstrapping technique. The resulting SSU and LSU trees are remarkably congruent and show a high degree of similarity with those based on alternative data sets and/or generated by different techniques. In addition to providing insights into the evolution of prokaryotic and eukaryotic (nuclear) lineages, the analysis reported here provides, for the first time, an extensive phylogeny of the mitochondrial lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Google Scholar 

  • Brosius J, Dull TJ, Noller HF (1980) Complete nucleotide sequence of a 23S ribosomal RNA gene fromEscherichia coli. Proc Natl Acad Sci USA 77:201–204

    Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon fromEscherichia coli. J Mol Biol 148:107–127

    Google Scholar 

  • Cavender JA, Felsenstein J (1987) Invariants of phylogenies: simple case with discrete states. J Classif 4:57–71

    Google Scholar 

  • Cedergren R, Lang BF (1985) Probing fungal mitochondrial evolution with tRNA. BioSystems 18:263–267

    Google Scholar 

  • Cedergren RJ, LaRue B, Sankoff D, Grosjean H (1981) The evolving tRNA molecule. CRC Crit Rev Biochem 11:35–104

    Google Scholar 

  • Chan Y-L, Olvera J, Wool IG (1983) The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene. Nucleic Acids Res 11:7819–7831

    Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The ribosomal RNA genes ofDrosophila mitochondrial DNA. Nucleic Acids Res 13:4029–4045

    Google Scholar 

  • Dale RMK, Mendu N, Ginsburg H, Kridl JC (1984) Sequence analysis of the maize mitochondrial 26S rRNA gene and flanking regions. Plasmid 11:141–150

    Google Scholar 

  • Dayhoff MO (1972) Atlas of protein sequence and structure, vol 5. National Biomedical Research Foundation, Washington DC

    Google Scholar 

  • Diaconis P, Efron B (1983) Computer-intensive methods in statistics. Sci Am 248:116–130

    Google Scholar 

  • Douglas SE, Doolittle WF (1984) Complete nucleotide sequence of the 23S rRNA gene of the cyanobacterium,Anacystis nidulans. Nucleic Acids Res 12:3373–3386

    Google Scholar 

  • Dunon-Bluteau D, Brun G (1986) The secondary structures of theXenopus laevis and human mitochondrial small ribosomal subunit RNA are similar. FEBS Lett 198:333–338

    Google Scholar 

  • Edwards K, Kössel H (1981) The rRNA operon fromZea mays chloroplasts: nucleotide sequence of 23S rDNA and its homology withE. coli 23S rDNA. Nucleic Acids Res 9:2853–2869

    Google Scholar 

  • Ellis RE, Sulston JE, Coulson AR (1986) The rDNA ofC. elegans: sequence and structure. Nucleic Acids Res 14:2345–2364

    Google Scholar 

  • Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliatesOxytricha nova andStylonychia pustulata. Mol Biol Evol 2:399–410

    Google Scholar 

  • Eperon IC, Anderson S, Nierlich DP (1980) Distinctive sequence of human mitochondrial ribosomal RNA genes. Nature 286:460–467

    Google Scholar 

  • Farris JS (1983) The logical basis of phylogenetic analysis. In: Plonick NI, Funk VA (eds) Advances in statistics, vol 2. Columbia University Press, New York, pp 7–36

    Google Scholar 

  • Felsenstein J (1983a) Statistical inference of phylogenies. Roy Stat Soc, Series A 146:246–272

    Google Scholar 

  • Felsenstein J (1983b) Inferring evolutionary trees from DNA sequences. In: Weir BS (ed) Statistical analysis of DNA sequence data. Marcel Dekker, New York, pp 133–150

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25:351–360

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239:748–753

    Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 20:406–416

    Google Scholar 

  • Fitch WM (1977) On the problem of generating the most parsimonius tree. Am Nat 111:223–257

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees: a method based on mutational distances as estimated from cytochromec sequences is of general applicability. Science 155:279–284

    Google Scholar 

  • Georgiev OI, Nikolaev N, Hadjiolov AA, Skryabin KG, Zakharyev VM, Bayev AA (1981) The structure of the yeast ribosomal RNA genes. 4. Complete sequence of the 25S rRNA gene fromSaccharomyces cerevisiae. Nucleic Acids Res 9:6953–6958

    Google Scholar 

  • Golding GB (1983) Estimation of DNA and protein sequence divergence: an examination of some assumptions. Mol Biol Evol 1:125–142

    Google Scholar 

  • Grabau EA (1985) Nucleotide sequence of the soybean mitochondrial 18S rRNA gene: evidence for a slow rate of divergence in the plant mitochondrial genome. Plant Mol Biol 5:119–124

    Google Scholar 

  • Gray MW, Boer PH (1988) Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. Philos Trans R Soc Lond B, in press

  • Gray MW, Sankoff D, Cedergren RJ (1984) On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit rRNA. Nucleic Acids Res 12:5837–5852

    Google Scholar 

  • Green CJ, Stewart GC, Hollis MA, Vold BS, Bott KF (1985) Nucleotide sequence of theBacillus subtilis ribosomal RNA operon,rrnB. Gene 37:261–266

    Google Scholar 

  • Gunderson JH, Sogin ML (1986) Length variation in eukaryotic rRNAs: small subunit rRNAs from the protistsAcanthamoeba castellanii andEuglena gracilis. Gene 44:63–70

    Google Scholar 

  • Gunderson JH, McCutchan TF, Sogin ML (1986) Sequence of the small subunit ribosomal RNA gene expressed in the bloodstream stages ofPlasmodium berghei: evolutionary implications. J Protozool 33:525–529

    Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84:5823–5827

    Google Scholar 

  • Gutell RR, Weiser B, Woese CR, Noller HF (1985) Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acids Res Mol Biol 32:155–216

    Google Scholar 

  • Hadjiolov AA, Georgiev OI, Nosikov VV, Yavachev LP (1984) Primary and secondary structure of rat 28S ribosomal RNA. Nucleic Acids Res 12:3677–3693

    Google Scholar 

  • Hartigan JA (1973) Minimum mutation fits to a given tree. Biometry 29:53–65

    Google Scholar 

  • Hassouna N, Michot B, Bachellerie J-P (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res 12:3563–3583

    Google Scholar 

  • Herzog M, Maroteaux L (1986) Dinoflagellate 17S rRNA sequence inferred from the gene sequence: evolutionary implications. Proc Natl Acad Sci USA 83:8644–8648

    Google Scholar 

  • Hixson JE, Brown WM (1986) A comparison of the small ribosomal RNA genes form the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications. Mol Biol Evol 3:1–18

    Google Scholar 

  • Hori H, Osawa S (1987) Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol Biol Evol 4:445–472

    Google Scholar 

  • HsuChen C-C, Kotin RM, Dubin DT (1984) Sequences of the coding and flanking regions of the large ribosomal subunit RNA gene of mosquito mitochondria. Nucleic Acids Res 12: 7771–7785

    Google Scholar 

  • Huysmans E, de Wachter R (1986a) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 14:r73-r118

    Google Scholar 

  • Huysmans E, de Wachter R (1986b) The distribution of 5S rRNA sequences in phenetic hyperspace. Implications for eubacterial, eukaryotic, archaebacterial and early biotic evolution. Endocyt Cell Res 3:133–155

    Google Scholar 

  • Jarsch M, Böck A (1985) Sequence of the 23S rRNA gene from the archaebacteriumMethanococcus vannielii: evolutionary and functional implications. Mol Gen Genet 200:305–312

    Google Scholar 

  • Kop J, Wheaton V, Gupta R, Woese CR, Noller HF (1984) Complete nucleotide sequence of a 23S ribosomal RNA gene fromBacillus stearothermophilus. DNA 3:347–357

    Google Scholar 

  • Kumano M, Tomioka N, Sugiura M (1983) The complete nucleotide sequence of a 23S rRNA gene from a blue-green alga,Anacystis nidulans. Gene 24:219–225

    Google Scholar 

  • Lake JA (1987) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191

    Google Scholar 

  • Lake JA (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331: 184–186

    Google Scholar 

  • Lake JA, Henderson E, Oakes M, Clark MW (1984) Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA 81:3786–3790

    Google Scholar 

  • Lake JA, Clark MW, Henderson E, Fay SP, Oakes M, Scheinman A, Thornber JP, Mah RA (1985) Eubacteria, halobacteria and the origin of photosynthesis: the photocytes. Proc Natl Acad Sci USA 82:3716–3720

    Google Scholar 

  • Lang BF, Cedergren R, Gray MW (1987) The mitochondrial genome of the fission yeast,Schizosaccharomyces pombe. Sequence of the large-subunit ribosomal RNA gene, comparison of potential secondary structure in fungal mitochondrial largesubunit rRNAs and evolutionary considerations. Eur J Biochem 169:527–537

    Google Scholar 

  • Laudien Gonzalez I, Gorski JL, Campen TJ, Dorney DJ, Erickson JM, Sylvester JE, Schmickel RD (1985) Variation among human 28S ribosomal RNA genes. Proc Natl Acad Sci USA 82:7666–7670

    Google Scholar 

  • Leffers H, Kjems J, Ostergaard L, Larsen N, Garrett RA (1987) Evolutionary relationships amongst archaebacteria. A comparative study of a sulphur-dependent extreme thermophile, an extreme halophile and a thermophilic methanogen. J Mol Biol 195:43–61

    Google Scholar 

  • Mankin AS, Kagramanova VK (1986) Complete nucleotide sequence of the single ribosomal RNA operon ofHalobacterium halobium: secondary structure of the archaebacterial 23S rRNA. Mol Gen Genet 202:152–161

    Google Scholar 

  • Manna E, Brennicke A (1985) Primary and secondary structure of 26S ribosomal RNA ofOenothera mitochondria. Curr Genet 9:505–515

    Google Scholar 

  • McCarroll R, Olsen GJ, Stahl YD, Woese CR, Sogin ML (1983) Nucleotide sequence of theDictyostelium discoideum small-subunit ribosomal ribonucleic acid inferred from the gene sequence: evolutionary implications. Biochemistry 22:5858–5868

    Google Scholar 

  • Moore GW, Goodman M, Barnabas J (1973) An iterative approach from the standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets. J Theor Biol 38:423–457

    Google Scholar 

  • Nei M, Kowhn RK (1983) Evolution of genes and proteins. Sinauer Associates, Sunderland MA

    Google Scholar 

  • Netzker R, Köchel HG, Basak N, Küntzel H (1982) Nucleotide sequence ofAspergillus nidulans mitochondrial genes coding for ATPase subunit 6, cytochrome oxidase subunit 3, seven unidentified proteins, four tRNAs and L-rRNA. Nucleic Acids Res 10:4783–4794

    Google Scholar 

  • Noller HF (1984) Structure of ribosomal RNA. Annu Rev Biochem 53:119–162

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S-i, Inokuchi H, Ozeki H (1986) Complete nucleotide sequence of liverwortMarchantia polymorpha chloroplast DNA. Plant Mol Biol Reporter 4:148–175

    Google Scholar 

  • Olsen GJ (1987) The earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harbor Symp Quant Biol LII:825–839

    Google Scholar 

  • Otsuka T, Nomiyama H, Yoshida H, Kukita T, Kuhara S, Sakaki Y (1983) Complete nucleotide sequence of the 26S rRNA gene ofPhysarum polycephalum: its significance in gene evolution. Proc Natl Acad Sci USA 80:3163–3167

    Google Scholar 

  • Pace NR, Olsen GJ, Woese CR (1986) Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45: 325–326

    Google Scholar 

  • Penny D (1988) What was the first living cell? Nature 331:111–112

    Google Scholar 

  • Ragan MA, Chapman DJ (1978) A biochemical phylogeny of the protists, Academic Press, New York

    Google Scholar 

  • Rothschild LJ, Ragan MA, Coleman AW, Heywood P, Gerbi S (1986) Are rRNA sequence comparisons the Rosetta stone of phylogenetics? Cell 47:640

    Google Scholar 

  • Ruvolo M, Smith TF (1986) Phylogeny and DNA-DNA hybridization. Mol Biol Evol 3:285–289

    Google Scholar 

  • Sankoff D (1987) Computational complexity and cladistics. In: Hoenigswald HM, Wiener LF (eds) Biological metaphor and cladistic classification. University of Pennsylvania Press, Philadelphia, pp 269–280

    Google Scholar 

  • Sankoff D, Cedergren R (1973) A test for nucleotide sequence homology. J Mol Biol 77:159–164

    Google Scholar 

  • Sankoff D, Cedergren R (1983) Simultaneous comparison of three or more sequences related by a tree. In: Sankoff D, Kruskel JB (eds) Time warps, string edits, and macromolecules: the theory and practices of sequence comparison. Addison-Wesley, Reading, pp 253–263

    Google Scholar 

  • Sankoff D, Rousseau P (1975) Locating the vertices of a Steiner tree in an arbitrary metric space. Math Program 9:240–248

    Google Scholar 

  • Schnare MN (1984) Ribosomal RNA structure and evolution revealed by nucleotide sequence analysis. Thesis, Dalhousie University, Halifax, Nova Scotia

    Google Scholar 

  • Schnare MN, Collings JC, Gray MW (1986a) Structure and evolution of the small subunit ribosomal RNA gene ofCrithidia fasciculata. Curr Genet 10:405–410

    Google Scholar 

  • Schnare MN, Heinonen TYK, Young PG, Gray MW (1986b) A discontinuous small subunit ribosomal RNA inTetrahymena pyriformis mitochondria. J Biol Chem 261:5187–5193

    Google Scholar 

  • Seilhamer JJ, Gutell RR, Cummings DJ (1984)Paramecium mitochondrial genes. II. Large subunit rRNA gene sequence and microevolution. J Biol Chem 259:5173–5181

    Google Scholar 

  • Sneath PH, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Sogin ML, Elwood HJ (1986) Primary structure of theParamecium tetraurelia small-subunit rRNA coding region: phylogenetic relationships within the Ciliophora. J Mol Evol 23: 53–60

    Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986a) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1383–1387

    Google Scholar 

  • Sogin ML, Miotto K, Miller L (1986b) Primary structure of theNeurospora crassa small subunit ribosomal RNA coding region. Nucleic Acids Res 14:9540

    Google Scholar 

  • Sogin ML, Swanton MT, Gunderson JH, Elwood HJ (1986c) Sequence of the small subunit ribosomal RNA gene from the hypotrichous ciliateEuplotes aediculatus. J Protozool 33:26–29

    Google Scholar 

  • Sokal RR, Sneath PH (1963) Principles of numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Sor F, Fukuhara H (1983) Complete DNA sequence coding for the large ribosomal RNA of yeast mitochondria. Nucleic Acids Res 11:339–348

    Google Scholar 

  • Spencer DF, Bonen L, Gray MW (1981) Primary sequence of wheat mitochondrial 5S ribosomal ribonucleic acid: functional and evolutionary implications. Biochemistry 20:4022–4029

    Google Scholar 

  • Spencer DF, Collings JC, Schnare MN, Gray MW (1987) Multiple spacer sequences in the nuclear large subunit ribosomal RNA gene ofCrithidia fasciculata. EMBO J 6:1063–1071

    Google Scholar 

  • Suyama Y (1986) Two-dimensional polyacrylamide gel electrophoresis analysis ofTetrahymena mitochondrial tRNA. Curr Genet 10:411–420

    Google Scholar 

  • Takaiwa F, Sugiura M (1982) The complete nucleotide sequence of a 23-S rRNA gene from tobacco chloroplasts. Eur J Biochem 124:13–19

    Google Scholar 

  • Takaiwa F, Oono K, Iida Y, Sugiura M (1985) The complete nucleotide sequence of a rice 25S.rRNA gene. Gene 37:255–259

    Google Scholar 

  • Uhlenbusch I, McCracken A, Gellissen G (1987) The gene for the large (16S) ribosomal RNA from theLocusta migratoria mitochondrial genome. Curr Genet 11:631–638

    Google Scholar 

  • Van Etten RA, Walberg MW, Clayton DA (1980) Precise localization and nucleotide sequence of the two mouse mitochondrial rRNA genes and three immediately adjacent novel tRNA genes. Cell 22:157–170

    Google Scholar 

  • Veldman GM, Klootwijk J, de Regt VCHF, Planta RJ, Branlant C, Krol A, Ebel J-P (1981) The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Res 9:6935–6952

    Google Scholar 

  • Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326: 411–414

    Google Scholar 

  • Ware VC, Tague BW, Clark CG, Gourse RL, Brand RC, Gerbi SA (1983) Sequence analysis of 28S ribosomal DNA from the amphibianXenopus laevis. Nucleic Acids Res 11:7795–7817

    Google Scholar 

  • Weisburg WG, Woese CR, Dobson ME, Weiss E (1985) A common origin of Rickettsiae and certain plant pathogens. Science 230:556–558

    Google Scholar 

  • Weisburg WG, Hatch TP, Woese CR (1986) Eubacterial origin of Chlamydiae. J Bacteriol 167:570–574

    Google Scholar 

  • Willekens P, Huysmans E, Vandenberghe A, de Wachter R (1986) Archaebacterial 5S ribosomal RNA: nucleotide sequence in two methanogen species, secondary structure models, and molecular evolution. Syst Appl Microbiol 7:151–159

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

  • Woese CR, Fox GE (1977a) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Google Scholar 

  • Woese CR, Fox GE (1977b) The concept of cellular evolution. J Mol Evol 10:1–6

    Google Scholar 

  • Woese CR, Olsen GJ (1986) Archaebacterial phylogeny: perspectives on the urkingdoms. Syst Appl Microbiol 7:161–177

    Google Scholar 

  • Woese CR, Debrunner-Vossbrinck BA, Oyaizu H, Stackebrandt E, Ludwig W (1985) Gram-positive bacteria: possible photosynthetic ancestry. Science 229:762–765

    Google Scholar 

  • Wolters J, Erdmann VA (1986) Cladistic analysis of 5S rRNA and 16S rRNA secondary and primary structure, the evolution of eukaryotes and their relation to archaebacteria. J Mol Evol 24:152–166

    Google Scholar 

  • Yamada T, Shimaji M (1987) An intron in the 23S rRNA gene of theChlorella chloroplasts: complete nucleotide sequence of the 23S rRNA gene. Curr Genet 11:347–352

    Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:4443–4447

    Google Scholar 

  • Zuckerkandl E, Pauling I (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cedergren, R., Gray, M.W., Abel, Y. et al. The evolutionary relationships among known life forms. J Mol Evol 28, 98–112 (1988). https://doi.org/10.1007/BF02143501

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02143501

Key words

Navigation