Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 27))

Abstract

Crystal structures can be analysed at many levels. At the most fundamental level, they are described in terms of the relative distribution of their constituent atoms, or of the coordination polyhedra of the component cations and anions. It is becoming increasingly apparent, however, that many families of structures can be usefully described in terms of larger basic structural units or modules. If such an approach to the description of crystal structures is adopted, many complex solids may be systematised in terms of series of stacking variants of the simple subunits; these phases are known as polytypes. This relatively broad definition of polytypism closely follows that of THOMPSON [1] and is discussed at length by ANGEL [2]. The definition removes any chemical constraints upon stacking variants, and allows more than one type of module to be present in a given polytype family. Polytypism is however a special form of polymorphism, and although there is no constraint upon the chemistry or structure of the modules involved, to be considered polymorphic the various modes of module stacking should not affect the composition of the phase as a whole. It should also be noted that this definition of polytypism allows for the existence of 2- and 3-dimensional polytypic structures, comprised of prismatic (rod-like) and block modules respectively, as well as the classically more familiar layer modules of the 1-dimensional polytypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thompson, J.B. (1981). In Structure and bonding in crystals II, eds M. O. Keeffe and A. Navrotsky (Academic Press, New York) p 167.

    Google Scholar 

  2. Angel, R. J. (1987) Z. Krist. 176, 193.

    Article  Google Scholar 

  3. Jepps, N. W. and Page, T. F. (1984) J. Crystal Growth 7, 259.

    Google Scholar 

  4. Loiseau, A., van Tenderloo, G., Portier, R. and Ducastelle, F. (1985) J. de Physique 46, 595.

    Article  Google Scholar 

  5. Pandey, D. and Krishna, P. (1984) J. Crystal Growth 7, 213.

    Google Scholar 

  6. Frank, F.C. (1951) Phil. Mag. 42, 1014.

    Google Scholar 

  7. Trigunayat, G. C. and Chadha, G. K. (1971) Phys. Status. Solidi A4, 9.

    ADS  Google Scholar 

  8. Jagodzinski, H. (1954) Neues Jahrb. Mineral. Monatsh. 3,49.

    Google Scholar 

  9. Smith, J., Yeomans, J. and Heine, V. (1984). In Proceedings of NATO advanced studies institute on modulated structure materials, edited by T. Tsakalakos. (Dortrecht, Nijhoff) p23.

    Google Scholar 

  10. Price, G. D. and Yeomans, J. M. (1984) Acta Cryst B40, 448.

    Google Scholar 

  11. Yeomans, J. M. and Price G. D. (1986) Bull. Min. 109, 3.

    Google Scholar 

  12. Aubry, S. (1978) In Soli tons in Condensed Matter Physics eds. A. R. Bishop and T. Schneider (Springer, Berlin) p. 264.

    Google Scholar 

  13. Villain, J. and Gordon, M. (1980) J. Phys. C. Solid St. Phys. 13, 3117.

    Google Scholar 

  14. Frfenkel, J. and Kontorova, T. (1938) Phys. Z Sowjet 13, 1.

    Google Scholar 

  15. Frank, F. C. and van der Merwe, J. H. (1949) Proc. Roy. Soc. (London). A198, 205.

    ADS  Google Scholar 

  16. Fisher, M. E. and Selke, W. (1980) Phys. Rev. Lett. 44, 1502.

    Article  MathSciNet  ADS  Google Scholar 

  17. Zdhanov, G. S. and Minervina, Z. (1945) J. Phys. (Moscow) 9, 151.

    Google Scholar 

  18. Bak, P. and Bruinsma, R. (1982) Phys. Rev. Lett. 49, 249.

    Article  MathSciNet  ADS  Google Scholar 

  19. Shinjo, K. and Sasada, T. (1985) J. Phys. C. Solid St. Phys. 18, L261.

    Article  ADS  Google Scholar 

  20. Axel, F. and Aubry, S. (1981) J Phys. C Solid St Phys. 14, 5433.

    Article  ADS  Google Scholar 

  21. Stoneham, A. M. and Durham, P. J. (1973) J. Phys. Chem. Solids 34, 2127.

    Article  ADS  Google Scholar 

  22. Elliott, R. J. (1961) Phys. Rev. 124, 346.

    Article  ADS  Google Scholar 

  23. Bak, P. and von Boehm, J. (1980) Phys. Rev. B21, 5297.

    ADS  Google Scholar 

  24. Selke, W. and Duxbury, P. M. (1984) Z. Phys. B57, 49.

    Article  ADS  Google Scholar 

  25. Szpilka, A. and Fisher, M. E. (1986) Phys. Rev. Lett. 57, 1044.

    Article  ADS  Google Scholar 

  26. Bak, P. (1982) Rep. Prog. Phys. 45, 587.

    Article  MathSciNet  ADS  Google Scholar 

  27. Yeomans, J. M. (1987) Solid State Physics, edited by H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press) In press.

    Google Scholar 

  28. Barreto, M. N. and Yeomans, J. M. (1985) Physica 134A, 84.

    ADS  Google Scholar 

  29. Akaogi, M., Akimoto, S., Horioka, K., Takahashi, K., and Horiuchi, H. (1982) J. Solid State Chem. 44, 257.

    Article  ADS  Google Scholar 

  30. Price, G. D. (1983) Phys. Chem. Minerals, 10, 77.

    Google Scholar 

  31. de Fontaine, D. and Kulik, J. (1985) Acta Metall. 33, 145.

    Article  Google Scholar 

  32. Broddin, D., van Tendeloo G., van Landuyt, J., Amelinckx, S., Portier, R., Guymont, M. and Loiseau, A. (1987) Phil. Mag. 54 395.

    Google Scholar 

  33. Price, G.D., Parker, S.C. and Yeomans, J.M. (1985) Acta Cryst. B41, 231.

    Google Scholar 

  34. Janssen, T. and Tjon, J. A. (1981) Phys. Rev. B24 2245.

    ADS  Google Scholar 

  35. Janssen, T. and Tjon, J. A. (1982) Phys. Rev. B25 3767.

    ADS  Google Scholar 

  36. Janssen, T. and Tjon, J. A. (1983) J. Phys. C. Solid St Phys. 16 4789.

    Article  ADS  Google Scholar 

  37. Benkert, C., Heine, V. and Simmons, E. H. (1987) Europhysics Letts. 3, 833.

    Article  ADS  Google Scholar 

  38. Upton, P. and Yeomans, J. (1987) Europhysics Letts. In Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Price, G.D., Yeomans, J.M. (1988). Competing Interactions and the Origins of Polytypism. In: LeSar, R., Bishop, A., Heffner, R. (eds) Competing Interactions and Microstructures: Statics and Dynamics. Springer Proceedings in Physics, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73498-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73498-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73500-4

  • Online ISBN: 978-3-642-73498-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics