Skip to main content
Log in

The Systematics of Crystal Polymorphic Transformations (Generalized on the Basis of Buerger’s Criteria)

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—An extended (3 × 3) classification of polymorphic transformations is proposed with the zeroth coordination sphere added to spheres I and II according to Buerger. Thus, the transformable coordination sphere is 0 for an atom or ion, 1 for a coordination polyhedron, and 2 for the nearest surroundings of a coordination polyhedron. The other classification parameter is determined by Buerger’s energetic transformation barrier. As well as reconstructive and deformation transformations, transformations of intermediate types occur, which are characterized by disordering of structural units (atoms, molecules, and other atomic complexes). The electron transitions within an atom, the variation of atomic spin, and magnetic ordering of atoms in a crystal structure are considered as examples of polymorphic transformations with the variations in the zeroth coordination sphere. The disordering transformations are illustrated by substitution–jumps of structural units and their free or hindered rotation. The concept of “polymorphism” for chemical elements is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Baumhauer, H., Uber die Kristalle des Carborundums. Z. Kristallogr, 1912, vol. 50, pp. 33–39.

    Google Scholar 

  2. Bokij, G.B., Kristallokhimiya (Crystal Chemistry), Moscow: Nauka, 1971.

    Google Scholar 

  3. Bridgman, P.W., The compressibility and pressure coefficient of resistance of ten elements, Proc. Am. Acad. Arts. Sci., 1927, vol. 62, no. 8, pp. 207–226.

    Article  Google Scholar 

  4. Buerger, M.J., Crystallographic aspects of phase transformations, Phase Transformations in Solids, Smoluchowski, R., Mayer, J.E., Weyl, W.A., Eds., New-York: John Wiley and Sons, 1951, pp. 183–211.

  5. Buerger, M.J., Phase transitions, Cristallografiya, 1971, vol. 16, pp. 1084–1096.

    Google Scholar 

  6. Dolivo-Dobrovolsky, V.V., Kristallokhimiya (Crystal Chemistry), St. Petersburg: Saint Petersburg University, 1999.

    Google Scholar 

  7. Filatov, S.K., Vysokotemperaturnaya kristallokhimiya (High-Temperature Crystal Chemistry), Leningrad: Nedra, 1990.

  8. Filatov, S.K., Crystal chemical phenomena: systematics, controversial facts, “borderline” problems, Cryst. Rept., 1995, vol. 40, no. 1, pp. 63–69.

    Google Scholar 

  9. Filatov, S.K., General concept of increasing crystal symmetry with an increase in temperature, Cryst. Rept., 2011, vol. 56, no. 6, pp. 953–961.

    Article  Google Scholar 

  10. Filatov, S.K., Grunin, V.S., Razumeenko, M.V., and Alekseeva, T.V., Microisomorphism and polymorphism of titanium dioxide, Kristallokhimiya i rentgenografiya mineralov (Crystal Chemistry and X-Ray of Minerals), Leningrad: Nauka, 1987, pp. 44–62.

    Google Scholar 

  11. Filatov, S.K., Polyakova, I.G., Gaikova, A.G., and Kamentsev, I.E., Thermal X-ray determination of the jump in the structural parameters of quartz during α-β transformation, Crystal. Rept., 1982, vol. 27, no. 3, pp. 624–626.

    Google Scholar 

  12. Filatov, S.K., Kotelnikova, E.N., and Chazhengina, S.Yu., New phase transition of the first kind and new polymorphic modifications of paraffins, Dokl. Akad. Nauk, 1993, vol. 330, no. 5, pp. 605–608.

    Google Scholar 

  13. Filatov, S.K., Kotelnikova, E.N., and Filippova, I.V., New mixed type rotational crystalline state of solids on an example of paraffin, Cryst. Rept., 1997, vol. 42, no. 4, pp. 608–611.

    Google Scholar 

  14. Filatov, S.K., Krivovichev, S.V., and Bubnova, R.S., Obshchaya kristallokhimiya (General Crystal Chemistry), St. Petersburg: Saint Petersburg University Press, 2018.

  15. Frank, F.C., CII. The growth of carborundum: dislocations and polytypism, The London: Edinburgh, and Dublin Philosoph., Mag. J. Sci.: Series 7, 1951, vol. 42, no. 332, pp. 1014–1021.

    Google Scholar 

  16. Goldschmidt, V.M., Kristallchemie, Jena: Verlag von Gustav Fischer, 1934.

    Google Scholar 

  17. Grunin, V.S., Razumeenko, M.V., Patrina, I.B., Filatov, S.K., and Alekseeva, T.V., About the existence and prevalence of TiO2— rutile, anatase and brookite, Dokl. Akad. Nauk SSSR, 1983, vol. 268, no. 3, pp. 686–688.

    Google Scholar 

  18. Guinier, A., Bokij, G.B., Boll-Dornberger, K., Cowley, J.M., Ďurovič, S., Jagodzinski, H., Krishna, P., de Wolff, P.M., Zvyagin, B.B., Cox, D.E., Goodman, P., Hahn, Th., Kuchitsu, K., and Abrahams, S.C., Nomenclature of polytype structures. Report of the International Union of Crystallography Ad hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures. Acta Cryst, 1984, vol. A40, pp. 399–404.

  19. Kondo, R.-I., Mashimo, T., and Sawaoka, A., Electrical resistivity and phase transformation of hematite under shock compression, J. Geophys. Res., 1980, vol. 85, no. B2, pp. 977–982.

    Article  Google Scholar 

  20. Kotelnikova, E.N. and Filatov, S.K., Kristallokhimiya parafinov (Crystal Chemistry of Paraffins), Leningrad: Neva, 2002, 352p.

  21. Landau, L.D. and Lifshitz, E.M., Statistical Physics., Part 1, Oxford–New York–Toronto–Sydney–Paris–Frankfurt: Pergamon Press, 1980.

    Google Scholar 

  22. Lawson, A.W. and Ting Yuan Tang, Concerning the high pressure allotropic modification of cerium, Phys. Rev., 1949, vol. 76, pp. 301–302.

    Article  Google Scholar 

  23. Likhter, A.I., Ryabinin, Yu.N., and Vereshchagin, L.F., The phase diagram of Cerium, Zh. Eksp. Teor. Fiz., 1957, vol. 33, no. 3 (9), pp. 610–613.

  24. Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E., and Parthe, E., Report of the international union of crystallography commission on crystallographic nomenclature subcommittee on the nomenclature of inorganic structure types, Acta Cryst., 1990, Vol. A46, pp. 1–11.

    Article  Google Scholar 

  25. Mitscherlich, E., Über die Körper, welche in zwei verschiedenen Formen kristallisieren. Abhandl, Berlin: Akad. Wissensch., aus d. Jahren 1822–1823, 1825, pp. 43–48.

    Google Scholar 

  26. Ohsumi, H. and Arima, T.-H., Novel insight into structural magnetism by polarized synchrotron X-ray scattering, Adv. Phys, 2016, vol. 1, pp. 128–145.

    Google Scholar 

  27. Poniatowskii, E.G., About the critical point on the cerium polymorphic transformation curve, Dokl. Akad. Nauk SSSR, 1958, vol. 120, no. 5, pp. 1021–1023.

    Google Scholar 

  28. Reeder, R.J., Crystal chemistry of the rhombohedral carbonates, Rev. Mineral., 1971, vol. 11, pp. 1–48.

    Google Scholar 

  29. Sanson, A., Kantor, I., Cerantola, V., Irifune, T., Carmera, A., and Pascarelli, S., Local structure and spin transition in in Fe2O3 hematite at high pressure, Phys. Rev., 2016, vol. B94, pp. 0141112-1-0141112-7.

  30. Schuch, A.F. and Sturdivant, J.H., The structure of cerium at the temperature of liquid air, J. Chem. Phys, 1950, vol. 18, no. 1, p. 145.

    Article  Google Scholar 

  31. Shafranovskii, I.I., Istoriya kristallografii. XIX vek (History of Crystallography, XIXth Century), Leningrad: Nauka, 1980, p. 324.

  32. Trombe, F. and Foex, M., Domaine d’existence et propriétés des différents états allotropiques du cérium métallique, Ann. Chim., 1944, vol. 19, pp. 417–445.

    Google Scholar 

  33. Urusov, V.S., Teoreticheskaya kristallokhimiya (Theoretical Crystal Chemistry), Moscow: Moscow State University, 1987.

  34. Verma, A. and Krishna, P., Polymorphism and polytypism in crystals, New York: John Wiley and Sons, 1966.

    Google Scholar 

  35. Voytekhovsky, Y.L., Definition, classification and matrix description of transformations of petrographic structures, Byul. Murmansk Gos. Tekhn. Univ., 2014, vol. 17, no. 2, pp. 266–270.

  36. Weinstein, B.K., Fridkin, V.M., and Indenbom, V.L., Modern Crystallography 2. Structure of Crystals, Berlin–Heidelberg: Springer-Verlag, 2000.

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, Project no. 18-29-12106.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. K. Filatov or P. Paufler.

Additional information

Translated by A. Rylova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, S.K., Paufler, P. The Systematics of Crystal Polymorphic Transformations (Generalized on the Basis of Buerger’s Criteria). Geol. Ore Deposits 62, 690–703 (2020). https://doi.org/10.1134/S1075701520080048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520080048

Keywords:

Navigation