Skip to main content

Low versus High Tidal Volumes

  • Conference paper
Acute Lung Injury

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 30))

  • 175 Accesses

Abstract

In the last 5 to 10 years, considerable attention has been paid to the ventilatory strategies used in the acute respiratory distress syndrome (ARDS) because ventilation could act not only as a symptomactic support but could also have an important impact on lung injury itself. Two general ideas are supporting this view. The first one is that mechanical ventilation by itself has the potential to induce lethal lesions of the alveolo-capillary membrane [1]. The severe evolution of some patients ventilated in the intensive care unit could be a result of inappropriate ventilatory settings. Up to now, it is extremely difficult to apply the experimental findings of different animal models to patients. Results are so impressive, however, that this concern became rapidly a rule and deliberate reduction in pressure or volume have been proposed as almost mandatory settings [2]. The second concern is the necessity to open up the collapsed zones of the lung and to keep them open [3]. The ventilatory settings producing these effects and enhancing what is referred to as alveolar recruitment, have been studied in details in patients by means of computed tomography (CT) scan [4–6]. Keeping the lung open necessitates to maintain a positive end-expiratory pressure (PEEP) which, in addition to obvious symptomatic improvement in oxygenation, has been found to be potentially important for the evolution of the disease in animal studies [7,8]. One of the important aspect seems to avoid the opening collapse phenomenon which necessarily occurs when the lung is allowed to collapse at end expiration [9,10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dreyfuss D, Saumon G (1994) Ventilation—induced injury. In: Tobin MJ (ed) Principles and practice of mechanical ventilation. Mac Graw Hill, New York, pp 793 – 811

    Google Scholar 

  2. Slutsky A (1994) Mechanical Ventilation (Consensus Conference) Intensive Care Med 20: 64–79 and 150–162.

    Google Scholar 

  3. Lachmann B (1992) Open the lung and keep the lung open. Intensive Care Med 18: 319 – 321

    Article  PubMed  CAS  Google Scholar 

  4. Gattinoni L, Pesenti A (1991) Computed tomography scanning in acute respiratory failure. In: Zapol WM, Lemaire F (eds) Adult respiratory distress syndrome. Marcel Dekker, New York, pp 199 – 221

    Google Scholar 

  5. Gattinoni L, D’Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R (1993) Regional effects and mechanisms of positive end—expiratory pressure in early adult respiratory distress syndrome. JAMA 269: 2122 – 2135

    Article  PubMed  CAS  Google Scholar 

  6. Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end—expiratory pressure on regional distribution of tidal volume and recrutement in adult respiratory distress syndrome. Am J Respir Crit Care Med 151: 1807 – 1814

    PubMed  CAS  Google Scholar 

  7. Corbridge TC, Wood LDH, Crawford GP, Chudoba MJ, Yanos J, Sznajder JI (1990) Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 142: 311 – 315

    PubMed  CAS  Google Scholar 

  8. Muscedere JG, Mullen JBM, Gari K, Bryan AC, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327 – 1334

    PubMed  CAS  Google Scholar 

  9. Taskar V, John J, Evander E, Wollmer P, Robertson B, Jonson B (1995) Healthy lungs tolerate repetitive collapse and reopening during short periods of mechanical ventilation. Acta An—aesthesiol Scand 39: 370 – 376

    Article  CAS  Google Scholar 

  10. Taskar V, John J, Evander E, Robertson B, Jonson B (1997) Surfactant dysfunction makes lung vulnerable to repetitive collapse and reexpansion. Am J Respir Crit Care 155: 313 – 320

    CAS  Google Scholar 

  11. Ranieri VM, Mascia L, Fiore T, Bruno F, Brienza A, Giuliani R (1995) Cardiorespiratory effects of positive end—expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 83: 710 – 720

    Article  PubMed  CAS  Google Scholar 

  12. Lachmann B, Jonson B, Lindroth M, Robertson B (1982) Modes of artificial ventilation in severe respiratory distress syndrome. Crit Care Med 10: 724 – 732

    Article  PubMed  CAS  Google Scholar 

  13. Slutsky AS (1993) Barotrauma and alveolar recruitment. Intensive Care Med 19: 369 – 371

    Article  PubMed  CAS  Google Scholar 

  14. Glaister DH, Schröter RC, Sudlow MF, Milic—Emili J (1973) Bulk elastic properties of excised lungs and the effect of a transpulmonary pressure gradient. Respir Physiol 17: 347 – 364

    Article  PubMed  CAS  Google Scholar 

  15. Salmon RB, Primiano Jr FP, Saidel GM, Niewoehner DE (1981) Human lung pressure—volume relationships: Alveolar collapse and airway closure. J Appi Physiol 51: 353 – 362

    CAS  Google Scholar 

  16. Benito S, Lemaire F, Mankikian B, Harf A (1985) Total respiratory compliance as a function of lung volume in patients with mechanical ventilation. Intensive Care Med 11: 76 – 79

    PubMed  CAS  Google Scholar 

  17. Benito S, Lemaire F (1990) Pulmonary pressure—volume relationship in acute respiratory distress syndrome in adults: Role of positive end—expiratory pressure. J Crit Care 5: 27 – 34

    Article  Google Scholar 

  18. Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16: 372 – 377

    Article  PubMed  CAS  Google Scholar 

  19. Hickling KG (1990) Ventilatory management of ARDS: Can it affect the outcome? Intensive Care Med 16: 219 – 226

    Article  PubMed  CAS  Google Scholar 

  20. Hickling KG, Walsh J, Henderson SJ, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low—volume, pressure—limited ventilation with permissive hypercapnia: A prospective study. Crit Care Med 22: 1568 – 1578

    Article  PubMed  CAS  Google Scholar 

  21. Lee CT, Fein AM, Lipmann M, Holtzman H, Kimbel P, Weinbaum G (1981) Elastase activity in pulmonary lavage fluid from patients with adult respiratory distress syndrome. N Engl J Med 304: 192 – 196

    Article  PubMed  CAS  Google Scholar 

  22. Kiiski R, Takala J, Kari A, Milic—Emili J (1992) The effect of tidal volume on gas exchange and oxygen transport in ARDS. Am Rev Respir Dis 146: 1131 – 1135

    CAS  Google Scholar 

  23. Roupie E, Dambrosio M, Servillo G, et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121 – 128

    PubMed  CAS  Google Scholar 

  24. Kiiski R, Kaitainen S, Karppi R, Takala J (1996) Physiological effects of reduced tidal volume at constant minute ventilation and inspiratory flow rate in acute respiratory distress syndrome. Intensive Care Med 22: 192 – 198

    Article  PubMed  CAS  Google Scholar 

  25. Thorens JB, Jolliet P, Ritz M, Chevrolet JC (1996) Effects of rapid permissive hypercapnia on hemodynamics, gas exchange, and oxygen transport and consumption during mechanical ventilation for the acute respiratory distress syndrome. Intensive Care Med 22: 182 – 192

    Article  PubMed  CAS  Google Scholar 

  26. Tsuno K, Prato P, Kolobow T (1990) Acute lung injury from mechanical ventilation at moderately high airway pressures. J Appi Physiol 69: 956 – 961

    CAS  Google Scholar 

  27. Hernandez L, Coker PJ, May S, Thompson AL, Parker JC (1990) Mechanical ventilation increases microvascular permeability in oleic acid—injured lungs. J Appi Physiol 69: 2057 – 2061

    CAS  Google Scholar 

  28. Milic—Emili J, Tantucci C, Chassé M, Corbeil C (1991) Introduction with special reference to ventilator—associated barotrauma. In: Benito S, Net A (eds) Pulmonary function in mechanically ventilated patients. Berlin, Springer Verlag, pp 1 – 8

    Google Scholar 

  29. Brunet F, Jeanbourquin D, Monchi M, et al (1995) Should mechanical ventilation be optimized to blood gases, lung mechanics, or thoracic CT scan ? Am J Respir Crit Care Med 152: 524 – 530

    PubMed  CAS  Google Scholar 

  30. Jardin F, Genevray B, Brun—Ney D, Bourdarias JP (1985) Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 88: 653 – 658

    CAS  Google Scholar 

  31. Katz JA, Zinn SE, Ozanne GM, Fairley HV (1981) Pulmonary, chest wall, and lung–thorax elastances in acute respiratory failure. Chest 80: 304 – 311

    Article  PubMed  CAS  Google Scholar 

  32. Pelosi P, Cereda M, Foti G, Giacomini M, Pesenti A (1995) Alterations in lung and chest wall mechanics in patients with acute lung injury: Effects of positive end–expiratory pressure. Am J Respir Crit Care Med 152: 531 – 537

    PubMed  CAS  Google Scholar 

  33. Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 273: 306 – 309

    Article  PubMed  CAS  Google Scholar 

  34. Feihl F, Perret C (1994) Permissive hypercapnia. How permissive should we be ? Am J Respir Crit Care Med 150: 1722 – 1737

    PubMed  CAS  Google Scholar 

  35. Puybasset L, Stewart T, Rouby JJ, et al (1994) Inhaled nitric oxide reverses the increase in pulmonary vascular resistance induced by permissive hypercapnia in patients with acute respiratory distress syndrome. Anesthesiology 80: 1254 – 1267

    Article  PubMed  CAS  Google Scholar 

  36. Blanch L, Fernandez R, Vallés J, Solé J, Roussos C, Artigas A (1994) Effect of two tidal volumes on oxygenation and respiratory system mechanics during the early stage of adult respiratory distress syndrome. J Crit Care 9: 151 – 158

    Article  PubMed  CAS  Google Scholar 

  37. Cereda M, Foti G, Müsch G, Sparacino ME, Pesenti A (1996) Positive end—expiratory pressure prevents the loss of respiratory compliance during low tidal volume ventilation in acute lung injury patients. Chest 109: 480 – 485

    Article  PubMed  CAS  Google Scholar 

  38. Amato MBP, Barbas CSV, Medeiros DM, et al (1995) Beneficial effects of the “Open lung approach” with low distending pressures in acute respiratory distress syndrome: A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152: 1835 – 1846

    PubMed  CAS  Google Scholar 

  39. Amato MBP, Barbas CSV, Medeiros DM, et al (1996) Improved survival in ARDS: Beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153: A531 (Abst)

    Google Scholar 

  40. Brochard L, Roudot’Thoraval F, and the collaborative groupe on VT reduction (1997) Tidal volume (VT) reduction in acute respiratory distress syndrome (ARDS): A multicenter randomized study. Am J Respir Crit Care Med (In press) (Abst)

    Google Scholar 

  41. Murray JF, Matthay MA, Luce JM, Flick MR (1988) An expanded definition of the adult respiratory distress syndrome. Am Rev Resp Dis 138: 720 – 723

    PubMed  CAS  Google Scholar 

  42. Knaus WA, Drager EA, Wagner DP, Zimmerman JE (1985) Prognosis in acute organ system failure. Ann Surg 292: 685 – 693

    Article  Google Scholar 

  43. Servillo G, Svantesson C, Beydon L, et al (1997) Pressure’volume curves in acute respiratory failure. “Automated low flow inflation” vs “occlusion”. Am J Resp Crit Care Med (In press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brochard, L. (1998). Low versus High Tidal Volumes. In: Marini, J.J., Evans, T.W. (eds) Acute Lung Injury. Update in Intensive Care and Emergency Medicine, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60733-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60733-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64532-7

  • Online ISBN: 978-3-642-60733-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics