Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 28))

  • 231 Accesses

Abstract

The primary goal of cardiovascular and respiratory systems is to supply adequate amounts of O2 to the tissues to meet their metabolic demand. Since a primary role of critical care resuscitative efforts is to insure the adequacy of O2 delivery in stress states, an understanding of cardio-pulmonary physiology and the effects of disease and therapeutic interventions on cardio-pulmonary status is central to the management of the critically ill patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glick G, Wechsler AS, Epstein DE (1969) Reflex cardiovascular depression produced by stimulation of pulmonary stretch receptors in the dog. J Clin Invest 48:467–472.

    Article  PubMed  CAS  Google Scholar 

  2. Painal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53:59–88.

    Google Scholar 

  3. Anrep GV, Pascual W, Rossler R (1936) Respiratory variations in the heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc R Soc Lond B Biol Sci 119:191–217.

    Google Scholar 

  4. Taha BH, Simon PM, Dempsey JA, Skatrud JB, Iber C (1995) Respiratory sinus arrhythmia in humans: an obligatory role for vagal feedback from the lungs. J Appi Physiol 78 (2): 638–645.

    CAS  Google Scholar 

  5. Bernardi L, Calciati A, Gratarola A, Battistin I, Fratino P, Finardi G (1986) Heart rate-respiration relationship: computerized method for early detection of cardiac autonomic damage in diabetic patients. Acta Cardiol 41:197–206.

    PubMed  CAS  Google Scholar 

  6. Bernardi L, Keller F, Sanders M, Reddy PS, Griffith B, Meno F, Pinsky MR (1989) Respiratory sinus arrhythmia in the totally denervated human heart. J Appi Physiol 67:1447–1455.

    CAS  Google Scholar 

  7. Frass M, Watschinger B, Traindl O, Popovic R, Podolsky A, Gisslinger H, Flager S, Golden M, Schuster E, Leithner C (1993) Atrial natriuretic peptide release in response to different positive end-expiratory pressure levels. Crit Care Med 21:343–347.

    Article  PubMed  CAS  Google Scholar 

  8. Payen DM, Brun-Buisson CJL, Carli PA, Huet Y, Leviel F, Cinotti L, Chiron B (1987) Hemodynamic, gas exchange, and hormonal consequences of LBPP during PEEP ventilation. J Appi Physiol 62 (1): 61–70.

    CAS  Google Scholar 

  9. Frage D, de la Coussaye JE, Beloucif S, Fratacci MD, Payen DM (1995) Interactions between hormonal modifications during Peep-Induced Antidiuresis and Antinatriuresis. Chest 107: 1095–1100.

    Article  Google Scholar 

  10. Wilkins MA, Su XL, Palayew MD, Yamashiro Y, Bolli P, McKenzie JK, Kryger MH (1995) The effects of posture change and continuous positive airway pressure on cardiac natriuretic peptides in congestive heart failure. Chest 107:909–915.

    Article  PubMed  CAS  Google Scholar 

  11. Shirakami G, Magaribuchi T, Shingu K, Suga S, Tamai S, Nakao K, Mori K (1993) Positive end-expiratory pressure ventilation decreases plasma atrial and brain natriuretic peptide levels in humans. Anesth Analg 77 (6): 1116–1121.

    Article  PubMed  CAS  Google Scholar 

  12. Bromberger-Barnea B (1981) Mechanical effects of inspiration on heart functions: A review. Fed Proc 40:2172–2177.

    PubMed  CAS  Google Scholar 

  13. Brecher GA, Hubay CA (1955) Pulmonary blood flow and venous return during spontaneous respiration. Circ Res 3:40–214.

    Google Scholar 

  14. Goldstein JA, Vlahakes GJ, Verrier ED, et al. (1982) The role of right ventricular systolic dysfunction and elevated intrapericardial pressures in the genesis of low output in experimental right ventricular infarction. Circulation 65:513.

    Article  PubMed  CAS  Google Scholar 

  15. Jardin F, Farcot JC, Boisante L, et al. (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304:387.

    Article  PubMed  CAS  Google Scholar 

  16. Jardin FF, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1984) Echocardiographic evaluation of ventricles during continuous positive pressure breathing. J Appi Physiol 56:619–627.

    CAS  Google Scholar 

  17. Luce JM (1984) The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure. J Am Med Assoc 252:807–811.

    Article  CAS  Google Scholar 

  18. Pree KJ, Cassels DE (1952) Oximeter studies in newborn infants during crying. Pediatr 9: 756–761.

    Google Scholar 

  19. Maughan WL, Shoukas AA, Sagawa K, Weisfeldt ML (1979) Instantaneous pressure-volume relationships of the canine right ventricle. Circ Res 44:309–315.

    PubMed  CAS  Google Scholar 

  20. Sibbald WJ, Driedger AA (1983) Right ventricular function in disease states: Pathophysiologic considerations. Crit Care Med 11:339.

    Article  PubMed  CAS  Google Scholar 

  21. Piene H, Sund T (1982) Does pulmonary impedance constitute the optimal load for the right ventricle? Am J Physiol 242: H154–H160.

    PubMed  CAS  Google Scholar 

  22. Pinsky MR (1984) Determinants of pulmonary arterial flow variation during respiration. J Appi Physiol 56:1237–1245.

    Article  CAS  Google Scholar 

  23. Pinsky MR (1984) Instantaneous venous return curves in an intact canine preparation. J Appi Physiol 56:765–771.

    CAS  Google Scholar 

  24. Madden JA, Dawson CA, Harder DR (1985) Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appi Physiol 59:113–118.

    CAS  Google Scholar 

  25. Hakim TS, Michel RP, Chang HK (1982) Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion. J Appi Physiol 53:1110–1115.

    Article  CAS  Google Scholar 

  26. Quebbeman E J, Dawson CA (1976) Influence of inflation and atelectasis on the hypoxic pressure response in isolated dog lung lobes. Cardiovas Res 10:672–677.

    Article  CAS  Google Scholar 

  27. Dawson CA, Grimm DJ, Linehan JH (1979) Lung inflation and longitudinal distribution of pulmonary vascular resistance during hypoxia. J Appi Physiol 47:532–536.

    CAS  Google Scholar 

  28. Howell JBL, Permutt S, Proctor DF, et al. (1961) Effect of inflation of the lung on different parts of the pulmonary vascular bed. J Appi Physiol 16:71–76.

    CAS  Google Scholar 

  29. West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appi Physiol 19:713–724.

    CAS  Google Scholar 

  30. Lodato RF, Michel JR, Murray PA (1985) Multipoint pulmonary vascular pressure-cardiac output plots in conscious dogs. Am J Physiol 249: H351–H357.

    PubMed  CAS  Google Scholar 

  31. Lopez-Muniz R, Stephens NL, Bromberger-Barnea B, Permutt S, Riley RL (1968) Critical closure of pulmonary vessels analyzed in terms of Starling resistor model. J Appi Physiol 24:625–635.

    CAS  Google Scholar 

  32. Hakim TS, Michel RP, Minami H, Chang K (1983) Site of pulmonary hypoxic vasoconstriction studied with arterial and venous occlusion. J Appi Physiol 54:1298–1302.

    CAS  Google Scholar 

  33. Block AJ, Boyson PG, Wynne JW (1979) The origins of cor pulmonale, a hypothesis. Chest 75:109.

    Article  PubMed  CAS  Google Scholar 

  34. Johnston WE, Vinten-Johansen J, Shugart HE, Santamore WP (1992) Positive end-expiratory pressure potentiates the severity of canine right ventricular ischemia-reperfusion injury. Am J Physiol (Heart Circ Physiol) 262:H168–H176.

    CAS  Google Scholar 

  35. Canada E, Benumnof JL, Tousdale FR (1982) Pulmonary vascular resistance correlated in intact normal and abnormal canine lungs. Crit Care Med 10:719–723.

    Article  PubMed  CAS  Google Scholar 

  36. Taylor RR, Corell JW, Sonnenblick EH, Ross Jr J (1967) Dependence of ventricular disten-sibility on filling the opposite ventricle. Am J Physiol 213:711–718.

    PubMed  CAS  Google Scholar 

  37. Brinker JA, Weiss I, Lappe DL, et al. (1980) Leftward septal displacement during right ventricular loading in man. Circulation 61:626–633.

    PubMed  CAS  Google Scholar 

  38. Sibbald WH, Calvin J, Driedger AA (1982) Right and left ventricular preload, and diastolic ventricular compliance: Implications of therapy in critically ill patients. Critical Care State of the Art. Fullerton, Calif. Society of Critical Care, vol. 3.

    Google Scholar 

  39. Gattinoni L, Mascheroni D, Torresin A, Fumagalli R, Vesconi S, Rossi GP, Rossi F, Baglioni S, Bassi F, Nastri G, Persenti A (1986) Morphological response to positive end-expiratory pressure in acute respiratory failure. Intensive Care Med 12:137–142.

    Article  PubMed  CAS  Google Scholar 

  40. Tsitlik JE, Halperin HR, Guerci AD, Dvorine LS, Popel AS, Siu CO, Yin FCP, Weisfeldt ML (1987) Augmentation of pressure in a vessel indenting the surface of the lung. Ann Biomed Eng 15:259–284.

    Article  PubMed  CAS  Google Scholar 

  41. Novak RA, Matuschak GM, Pinsky MR (1988) Effect of ventilatory frequency on regional pleural pressure. J Appi Physiol 65:1314–1323.

    CAS  Google Scholar 

  42. Cassidy SS, Wead WB, Seibert GB, Ramanathan M (1987) Changes in left ventricular geometry during spontaneous breathing. J Appi Physiol 63 (2): 803–811.

    CAS  Google Scholar 

  43. Hoffman EA, Ritman EL (1987) Heart-lung interaction: effect on regional lung air content and total heart volume. Ann Biomed Eng 15:241–257.

    Article  PubMed  CAS  Google Scholar 

  44. Olson LE, Hoffman E A (1995) Heart-lung interactions determined by electron beam X-ray CT in laterally recumbent rabbits. J Appi Physiol 78 (2): 417–427.

    CAS  Google Scholar 

  45. Cassidy SS, Robertson CH, Pierce AK, et al. (1978) Cardiovascular effects of positive end-expiratory pressure in dogs. J Appi Physiol 4:743.

    Google Scholar 

  46. Conway CM (1975) Hemodynamic effects of pulmonary ventilation. Br J Anaesth 47:761–766.

    Article  PubMed  CAS  Google Scholar 

  47. Goldberg HS, Rabson J (1981) Control of cardiac output by systemic vessels: Circulatory adjustments of acute and chronic respiratory failure and the effects of therapeutic interventions. Am J Cardiol 47:696.

    Article  PubMed  CAS  Google Scholar 

  48. Guyton AC, Lindsey AW, Abernathy B, et al. (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189:609–615.

    PubMed  CAS  Google Scholar 

  49. Kilburn KH (1963) Cardiorespiratory effects of large pneumothorax in conscious and anesthetized dogs. J Appi Physiol 18 (2): 279–283.

    CAS  Google Scholar 

  50. Chevalier PA, Weber KC, Engle JC, et al. (1972) Direct measurement of right and left heart outputs in Valsalva-like maneuver in dogs. Proc Soc Exper Biol Med 139:1429–1437.

    CAS  Google Scholar 

  51. Guntheroth WC, Gould R, Butler J, et al. (1974) Pulsatile flow in pulmonary artery, capillary and vein in the dog. Cardiovascular Res 8:330–337.

    Article  CAS  Google Scholar 

  52. Guntheroth WG, Morgan BC, Mullins GL (1967) Effect of respiration on venous return and stroke volume in cardiac tamponade. Mechanism of pulsus paradoxus. Circ Res 20:381–390.

    CAS  Google Scholar 

  53. Guyton AC (1963) Effect of cardiac output by respiration, opening the chest, and cardiac tamponade. In: Circulatory Physiology: Cardiac Output and Its Regulation. Saunders, Philadelphia, PA, pp 378–386.

    Google Scholar 

  54. Holt JP (1944) The effect of positive and negative intrathoracic pressure on cardiac output and venous return in the dog. Am J Physiol 142:594–603.

    Google Scholar 

  55. Morgan BC, Martin WE, Hornbein TF, et al. (1960) Hemodynamic effects of intermittent positive pressure respiration. Anesthesiology 27:584–590.

    Article  Google Scholar 

  56. Scharf SM, Brown R, Saunders N, Green LH (1980) Hemodynamic effects of positive pressure inflation. J Appi Physiol 49:124–131.

    CAS  Google Scholar 

  57. Wise RA, Robotham JL, Summer WR (1981) Effects of spontaneous ventilation on the circulation. Lung 159:175–192.

    Article  PubMed  CAS  Google Scholar 

  58. Braunwald E, Binion JT, Morgan WL, Sarnoff SJ (1957) Alterations in central blood volume and cardiac output induced by positive pressure breathing and counteracted by metraminol (Aramine). Circ Res 5:670–675.

    PubMed  CAS  Google Scholar 

  59. Morgan BC, Abel FL, Mullins GL, et al. (1966) Flow patterns in cavae, pulmonary artery, pulmonary vein and aorta in intact dogs. Am J Physiol 210:903–909.

    PubMed  CAS  Google Scholar 

  60. Scharf SM, Brown R, Saunders N, et al. (1979) Effects of normal and loaded spontaneous inspiration on cardiovascular function. J Appi Physiol 47:582–590.

    CAS  Google Scholar 

  61. Fessler HE, Brower RG, Wise RA, Permutt S (1992) Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis 146:4–10.

    PubMed  CAS  Google Scholar 

  62. Takata M, Robotham JL (1992) Effects of inspiratory diaphragmatic descent on inferior vena cavai venous return. J Appi Physiol 72:597–607.

    CAS  Google Scholar 

  63. Matuschak GM, Pinsky MR, Rogers RM (1987) Effects of positive end-expiratory pressure on hepatic blood flow and hepatic performance. J Appi Physiol 62:1377–1383.

    CAS  Google Scholar 

  64. Brienza N, Revelly JP, Ayuse T, Robotham JL (1995) Effect of PEEP on liver arterial and venous blood flows. Am J Respir Crit Care Med 152:504–510.

    PubMed  CAS  Google Scholar 

  65. Sha M, Saito Y, Yokoyama K, Sawa T, Amaha K (1987) Effects of continuous positive-pressure ventilation on hepatic blood flow and intrahepatic oxygen delivery in dogs. Crit Care Med 15:1040–1417.

    Article  PubMed  CAS  Google Scholar 

  66. Richard C, Berdeaux A, Delion F, et al. (1986) Effect of mechanical ventilation on hepatic drug pharmacokinetics. Chest 90 (6): 837–842.

    Article  PubMed  CAS  Google Scholar 

  67. Dorinsky PM, Hamlin RL, Gadek JE (1987) Alterations in regional blood flow during positive end-expiratory pressure ventilation. Crit Care Med 15 (2): 106–115.

    Article  PubMed  CAS  Google Scholar 

  68. Cournaud A, Motley HL, Werko L, et al. (1948) Physiologic studies of the effect of intermittent positive pressure breathing on cardiac output in man. Am J Physiol 152:162–174.

    Google Scholar 

  69. Grenvik A (1966) Respiratory, circulatory and metabolic effects of respiratory treatment. Acta Anaesth Scand (Suppl).

    Google Scholar 

  70. Harken AH, Brennan MF, Smith N, Barsamian EM (1974) The hemodynamic response to positive end-expiratory ventilation in hypovolemic patients. Surgery 76:786–793.

    PubMed  CAS  Google Scholar 

  71. Magder S, Georgiadis G, Cheong T (1992) Respiratory variation in right atrial pressure predict the response to fluid challenge. J Crit Care 7 (2): 76–85.

    Article  Google Scholar 

  72. Terada N, Takeuchi T (1993) Postural changes in venous pressure gradients in anesthetized monkeys. Am J Physiol 264: H21–H25.

    PubMed  CAS  Google Scholar 

  73. Scharf S, Tow DE, Miller MJ, Brown R, Mclntyre K, Dilts C (1989) Influence of posture and abdominal pressure on the hemodynamic effects of Mueller’s maneuver. J Crit Care 4(1): 26–34.

    Article  Google Scholar 

  74. Tarasiuk A, Scharf SM (1993) Effects of periodic obstructive apneas on venous return in closed-chest dogs. Am Rev Respir Dis 148:323–329.

    PubMed  CAS  Google Scholar 

  75. Stalcup SA, Mellins RB (1977) Mechanical forces producing pulmonary edema in acute asthma. N Engl J Med 297:592–596.

    Article  PubMed  CAS  Google Scholar 

  76. Lores ME, Keagy BA, Vassiliades T, Henry GW, Lucas CL, Wilcox BR (1985) Cardiovascular effects of positive end-expiratory pressure (PEEP) after pneumonectomy in dogs. Ann Thorac Surg 40 (5): 464–473.

    Article  PubMed  CAS  Google Scholar 

  77. Buda AJ, Pinsky MR, Ingels NB, et al. (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301:453–459.

    Article  PubMed  CAS  Google Scholar 

  78. Pinsky MR, Summer WR, Wise RA, Permutt S, Bromberger-Barnea B (1983) Augmentation of Cardiac Function by Elevation of Intrathoracic Pressure. J Appi Physiol 54:950–955.

    CAS  Google Scholar 

  79. Pinsky MR, Summer WR (1983) Cardiac Augmentation by Phasic High Intrathoracic Support (PHIPS) in Man. Chest 84:370–375.

    Article  PubMed  CAS  Google Scholar 

  80. Blaustein AS, Risser TA, Weiss JW, Parker JA, Holman L, McFadden ER (1986) Mechanisms of pulsus paradoxus during resistive respiratory loading and asthma. J Am Coll Cardiol 8: 529–536.

    Article  PubMed  CAS  Google Scholar 

  81. Strohl KP, Scharf SM, Brown R, Ingram RH Jr (1987) Cardiovascular performance during bronchospasm in dogs. Respiration 51:39–48.

    Article  PubMed  CAS  Google Scholar 

  82. Scharf SM, Graver LM, Balaban K (1992) Cardiovascular effects of periodic occlusions of the upper airways in dogs. Am Rev Respir Dis 146:321–329.

    PubMed  CAS  Google Scholar 

  83. Viola AR, Puy RJM, Goldman E (1990) Mechanisms of pulsus paradoxus in airway obstruction. J Appi Physiol 68 (5):1927–1931.

    CAS  Google Scholar 

  84. Scharf SM, Graver LM, Khilnani S, Balaban K (1992) Respiratory phasic effects of inspiratory loading on left ventricular hemodynamics in vagotomized dogs. J Appi Physiol 73 (3): 995–1003.

    CAS  Google Scholar 

  85. Garpestad E, Parker JA, Katayama H, et al. (1994) Decrease in ventricular stroke volume at apnea termination is independent of oxygen desaturation. J Appi Physiol 77 (4): 1602–1608.

    CAS  Google Scholar 

  86. Gomez A, Mink S (1992) Interaction between effects of hypoxia and hypercapnia on altering left ventricular relaxation and chamber stiffness in dogs. Am Rev Respir Dis 146:313–320.

    PubMed  CAS  Google Scholar 

  87. Butler J (1983) The heart is in good hands. Circulation 67:1163–1168.

    Article  PubMed  CAS  Google Scholar 

  88. Shepherd JT (1981) The lungs as receptor sites for cardiovascular regulation. Circulation 63:1–10.

    Article  PubMed  CAS  Google Scholar 

  89. Pinsky MR, Matuschak GM, Klain M (1985) Determinants of cardiac augmentation by increases in intrathoracic pressure. J Appi Physiol 58:1189–1198.

    CAS  Google Scholar 

  90. Abel FL, Mihailescu LS, Lader AS, Starr RG (1995) Effects of pericardial pressure on systemic and coronary hemodynamics in dogs. Am J Physiol 268 (Heart Circ Physiol 37): H1593–H1605.

    Google Scholar 

  91. Khilnani S, Graver LM, Balaban K, Scharf SM (1992) Effects of inspiratory loading on left ventricular myocardial blood flow and metabolism. J Appi Physiol 72 (4): 1488–1492.

    CAS  Google Scholar 

  92. Satoh S, Watanabe J, Keitoku M, Itoh N, Maruyama Y, Takishima T (1988) Influences of pressure surrounding the heart and intracardiac pressure on the diastolic coronary pressure-flow relation in excised canine heart. Circ Res 63:788–797.

    PubMed  CAS  Google Scholar 

  93. Beyar R, Goldstein Y (1987) Model studies of the effects of the thoracic pressure on the circulation. Ann Biomed Eng 15:373–383.

    Article  PubMed  CAS  Google Scholar 

  94. Cassidy SA, Wead WB, Seibert GB, Ramanathan M (1987) Geometric left-ventricular responses to interactions between the lung and left ventricle: positive pressure breathing. Ann Biomed Eng 15:285–295.

    Article  PubMed  CAS  Google Scholar 

  95. Scharf SM, Brown R, Warner KG, Khuri S (1989) Intrathoracic pressure and left ventricular configuration with respiratory maneuvers. J Appi Physiol 66 (1): 481–491.

    CAS  Google Scholar 

  96. Shuey CB, Pierce AK, Johnson RL (1969) An evaluation of exercise tests in chronic obstructive lung disease. J Appi Physiol 27:256–261.

    Google Scholar 

  97. Grace MP, Greenbaum DM (1982) Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med 20:358–360.

    Article  Google Scholar 

  98. Mitzner W, Gioia F, Weinmann GG, Robotham JL, Ehrlich W (1987) Interaction between high frequency jet ventilation and cardiovascular function. Ann Biomed Eng 15:319–329.

    Article  PubMed  CAS  Google Scholar 

  99. Peters J, Kindred MK, Robotham JL (1988) Transient analysis of cardiopulmonary interactions II. Systolic events. J Appi Physiol 64:1518–1526.

    CAS  Google Scholar 

  100. Rasanen J, Nikki P, Heikkila J (1984) Acute myocardial infarction complicated by respiratory failure. The effects of mechanical ventilation. Chest 85:21–28.

    CAS  Google Scholar 

  101. Rasanen J, Vaisanen IT, Heikkila J, et al. (1985) Acute myocardial infarction complicated by left ventricular dysfunction and respiratory failure. The effects of continuous positive airway pressure. Chest 87:158–162.

    CAS  Google Scholar 

  102. Beach T, Millen E, Grenvik (1973) Hemodynamic response to discontinuance of mechanical ventilation. Crit Care Med 1:85–90.

    Article  PubMed  CAS  Google Scholar 

  103. Lemaire F, Teboul JL, Cinoti L, Giotto G, Abrouk F, Steg G, Macquin-Mavier I, Zapol WM (1988) Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 69:171–179.

    Article  PubMed  CAS  Google Scholar 

  104. Calvin JE, Driedger AA, Sibbald WJ (1981) Positive end-expiratory pressure (PEEP) does not depress left ventricular function in patients with pulmonary edema. Am Rev Resp Dis 124:121–128.

    PubMed  CAS  Google Scholar 

  105. Roussos C, Macklem PT (1982) The respiratory muscles. N Engl J Med 307:786–797.

    Article  PubMed  CAS  Google Scholar 

  106. Kawagoe Y, Permutt S, Fessler HE (1994) Hyperinflation with intrinsic PEEP and respiratory muscle blood flow. J Appi Physiol 77 (5): 2440–2448.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pinsky, M.R. (1997). Heart-Lung Interactions. In: Pinsky, M.R. (eds) Applied Cardiovascular Physiology. Update in Intensive Care and Emergency Medicine, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60696-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60696-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64512-9

  • Online ISBN: 978-3-642-60696-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics