Skip to main content
Log in

Heart-lung interaction: Effect on regional lung air content and total heart volume

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To study the interactions between and within the heart and lungs, end-diastolic (ED) and end-systolic (ES) volumes and intrathoracic location of the heart, and the regional air content, volume and geometry of the lungs, were measured from three-dimensional image data generated with the Dynamic Spatial Reconstructor (DSR). The DSR was used to scan the full thoracic extent of anesthetized dogs and sloths at selected transpulmonary pressures. The results show that the dependent to non-dependent gradient of regional lung opacity (or conversely regional air content) in the supine animal was not present in the prone animals. While the rib cage and diaphragm of the dog deformed markedly, the shape of the sloth's rib cage and diaphragm remained essentially constant with change in body orientation. As a consequence of these findings, we deduce that the observed change in gradient of regional lung air content in both dog and sloth are in response to changes in the intrathoracic position of the heart which alter ventral lung geometry and not a response to changes in rib cage or diaphragm geometry. In a second series of studies we reconstructed the 3-D extent of the heart at ED and ES in supine anesthetized dogs and demonstrated that the total heart volume (THV) (i.e. contained by the pericardial sac) during sinus rhythm differs by less than 5% between ED and ES. The DSR image data show that this is achieved by the epicardial apex remaining essentially fixed and that the plane containing the atrio-ventricular valves moves like a plunger towards the apex in systole. When atrial fibrillation is present, the THV no longer remains constant and decreases during systole, presumably because of increased stiffness of the atrial myocardium. We conclude from the experimental results that the heart plays an important role in determining regional differences in alveolar expansion, and that by maintaining a constant THV, the heart minimizes energy expenditure which would be caused by moving the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostoni, E. Mechanics of the pleural space.Physiol. Rev. 52:59–128, 1972.

    Google Scholar 

  2. Banchero, N., P.E. Schwartz, A.G. Tsakiris and E.H. Wood. Pleural and esophageal pressures in the upright body position.J. Appl. Physiol 23:228–234, 1967.

    PubMed  CAS  Google Scholar 

  3. Beck, K.C. and K. Rehder. Differences in regional vascular conductances in isolated dog lungs.J. Appl. Physiol. 61:530–538, 1986.

    PubMed  CAS  Google Scholar 

  4. Craven, K.D. and L.D.H. Wood. Extrapericardial and esophageal pressure with positive end-expiratory pressure in dogs.J. Appl. Physiol 51:798–805, 1981.

    PubMed  CAS  Google Scholar 

  5. Crystal, G.J., H.F. Downey and F.A. Bashour. Small vessel and total coronary blood volume during intracoronary adenosine.Am. J. Physiol: Heart Circ. Physiol. 10:H194–H201, 1981.

    Google Scholar 

  6. D'Angelo, E., M.V. Bonanni, S. Michelini and E. Agostoni. Topography of the pleural surface pressure in rabbits and dogs.Respir. Physiol. 8:204–229, 1970.

    Article  PubMed  Google Scholar 

  7. Eliasen, P., O. Amtorp, E. Tondevold and S. Haunso. Regional blood flow, microvascular blood content and tissue haematocrit in canine myocardium.Cardiovasc. Res. 16:593–598, 1982.

    PubMed  CAS  Google Scholar 

  8. Fowler, W.S. Intrapulmonary distribution of inspired gas.Physiol. Rev. 32:1–20, 1952.

    PubMed  CAS  Google Scholar 

  9. Glazier, J.B., J.M.B. Hughes, J.E. Maloney and J.B. West. Vertical gradient of alveolar size in lungs of dogs frozen intact.J. Appl. Physiol. 23:694–705, 1967.

    PubMed  CAS  Google Scholar 

  10. Hamilton, W.F. and J.H. Rompf. Movements of the base of the ventricle and the relative constancy of the cardiac volume.Am. J. Physiol. 102:559–565, 1932.

    Google Scholar 

  11. Heffernan, P.B. and R.A. Robb. A new method for shaded surface display of biological and medical images.IEEE Trans. Med. Imaging MI-4:26–38, 1985.

    Article  CAS  Google Scholar 

  12. Henderson, Y. and A.L. Prince. The relative systolic discharges of the right and left ventricles and their bearing on pulmonary congestion and depletion.Heart 5:217–226, 1914.

    Google Scholar 

  13. Hoffman, E.A. Effect of body orientation on regional lung expansion: A computed tomographic approach.J. Appl. Physiol. 59:468–480, 1985.

    PubMed  CAS  Google Scholar 

  14. Hoffman, E.A., T. Behrenbeck, P.A. Chevalier and E.H. Wood. Estimation of regional pleural surface expansile forces in intact dogs.J. Appl. Physiol 55:935–948, 1983.

    PubMed  CAS  Google Scholar 

  15. Hoffman, E.A., S.J. Lai-Fook, J. Wei and E.H. Wood: Regional pleural surface expansile forces in intact dogs by wick catheters.J. Appl. Physiol 55:1523–1529, 1983.

    PubMed  CAS  Google Scholar 

  16. Hoffman, E.A., and E.L. Ritman. Effect of body orientation on regional lung expansion in dog and sloth.J. Appl. Physiol 59:481–491, 1985.

    PubMed  CAS  Google Scholar 

  17. Hoffman, E.A. and E.L. Ritman. Shape and dimensions of cardiac chambers via computed tomography: Role of imaged slice thickness and orientation.Radiology 155:739–744, 1985.

    PubMed  CAS  Google Scholar 

  18. Hoffman, E.A. and E.L. Ritman. Invariant total heart volume in the intact thorax.Am. J. Physiol: Heart Circ. Physiol. H883–H890, 1985.

  19. Hoffman, E.A. and E.L. Ritman. Role of heart cycle and lung expansion on cardiac geometry and myocardial volume.Fed. Proc. 44:139 (abstract), 1985.

    Google Scholar 

  20. Hoffman, E.A. and E.L. Ritman. Law of constant heart volume disrupted by atrial fibrillation.Fed. Proc. 45:776 (abstract), 1986.

    Google Scholar 

  21. Hoffmann, E.A., L.J. Sinak, R.A. Robb and E.L. Ritman. Non-invasive quantitative imaging of shape and volume of lungs.J. Appl. Physiol. 54:1414–1421, 1983.

    Google Scholar 

  22. Hoppin, F.G., Jr., I.D. Green and J. Mead. Distribution of pleural surface pressure in dogs.J. Appl. Physiol. 27:863–873, 1969.

    PubMed  Google Scholar 

  23. Iwasaki, T., L.J. Sinak, E.A. Hoffman, R.A. Robb, L.D. Harris, R.C. Bahn and E.L. Ritman. Mass of left ventricular myocardium estimated with the Dynamic Spatial Reconstructor.Am. J. Physiol.: Heart Circ. Physiol. 15:H138–H142, 1984.

    Google Scholar 

  24. Kenner, H.M. and E.H. Wood. Intrapericardial, intrapleural and intracardiac pressures during acute heart failure in dogs without thoracotomy.Circ. Res. 19:1071–1079, 1966.

    PubMed  CAS  Google Scholar 

  25. Lai-Fook, S.J., K.C. Beck and P.A. Southorn. Pleural liquid pressure measured by micropipettes in rabbits.J. Appl. Physiol. 56:1633–1639, 1984.

    PubMed  CAS  Google Scholar 

  26. Lai-Fook, S.J. and M.R. Kaplowitz. Pleural space thickness in sity by light microscopy in five mammalian species.J. Appl. Physiol. 59:603–610, 1985.

    PubMed  CAS  Google Scholar 

  27. Lai-Fook, S.J., T.A. Wilson, R.E. Hyatt and J.R. Rodarte. Elastic constants of inflated lobes of dog lungs.J. Appl. Physiol. 40:508–513, 1976.

    PubMed  CAS  Google Scholar 

  28. McMahon, S.M., D.F. Proctor and S. Permutt. Pleural surface pressure in dogs.J. Appl. Physiol. 27:881–885, 1969.

    PubMed  CAS  Google Scholar 

  29. Mead, J. Mechanical properties of lungs.Physiol. Rev. 41:281–330, 1961.

    PubMed  CAS  Google Scholar 

  30. Milic-Emili, J., J.A.M. Henderson, M.B. Dolovich, D. Trop and K. Kaneko. Regional distribution of inspired gas in the lung.J. Appl. Physiol. 21:749–759, 1966.

    PubMed  CAS  Google Scholar 

  31. Millic-Emili, J., J. Mead, J.M. Turner and E.M. Glauser. Improved techniques for estimating pleural pressure from esophageal balloons.J. Appl. Physiol. 19:207–211, 1964.

    Google Scholar 

  32. Morgenstern C.U., Holjes, G. Arnold and W. Lochner. The influence of coronary pressure and coronary flow on intracoronary blood volume and geometry of the left ventricle.Pflugers Arch. 340: 101–111, 1973.

    Article  PubMed  CAS  Google Scholar 

  33. Ritman, E.L., R.A. Robb and L.D. Harris.Imaging Physiological Functions: Experiences with the DSR. Philadelphia, Praeger, 1985.

    Google Scholar 

  34. Rodarte, J.R., R.D. Hubmayr, D. Stamenovic and B.J. Walters. Regional lung strain in dogs during deflation from total lung capacity.J. Appl. Physiol. 58:164–172, 1985.

    PubMed  CAS  Google Scholar 

  35. Sass, D.J., E.L. Ritman, P.E. Caskey, N. Banchero and E.H. Wood. Liquid breathing: Prevention of pulmonary arterial-venous shunting during acceleration.J. Appl. Physiol. 32:451–455, 1972.

    PubMed  CAS  Google Scholar 

  36. Wiener-Kronish, J.P., M.A. Gropper and S.J. Lai-Fook. Pleural liquid pressure in dogs measured using a rib capsule.J. Appl. Physiol. 59:597–602, 1985.

    PubMed  CAS  Google Scholar 

  37. Wood, E.H. Some effects of gravitational and inertial forces on the cardiopulmonary system.Aerospace Med. 38:225–233, 1967.

    Google Scholar 

  38. Wood, E.H., A.C. Nolan, E.E. Donald and L. Cronin: Influence of acceleration on pulmonary physiology.Fed. Proc. 22:1024–1034, 1963.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, E.A., Ritman, E.L. Heart-lung interaction: Effect on regional lung air content and total heart volume. Ann Biomed Eng 15, 241–257 (1987). https://doi.org/10.1007/BF02584282

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584282

Keywords

Navigation