Skip to main content

Chromosome Instability Syndromes: Lessons for Carcinogenesis

  • Chapter
Genetic Instability and Tumorigenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 221))

Abstract

The ability to maintain genomic integrity in the face of DNA damage is critical for survival. Biological organisms are not merely passive targets of DNA-damaging agents but actively respond to DNA damage in a variety of ways, e.g., the SOS system in Escherichia coli (Battista et al. 1990). The means by which cells achieve this goal are complex and involve DNA repair, genetic recombination, alterations in the cell cycle, and programmed cell death. This article discusses the chromosome instability syndromes, human diseases in which these homeostatic processes have broken down, resulting in cancer, immunodeficiency, growth failure, neurologic abnormalities, and mutagen sensitivity. Genetic instability in these syndromes may result from changes in DNA topology, loss of cell cycle checkpoint control, or dysregulation of lymphokine-mediated signal-transduction pathways, illustrating the diverse nature of the cellular processes that can affect the integrity of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adler-Brecher B, Zhang Q, Flit Y, Gray DL, Beaver HA, Reid JE, Auerbach AD (1992) Prenatal diagnosis of Fanconi anemia in monozygotic twin boys with discordant phenotype. Am J Hum Genet 51: A251

    Google Scholar 

  • Agamanolis DP, Greenstein JI (1979) Ataxia-telangiectasia: report of a case with Lewy bodies and vascular abnormalities within cerebral tissue. J Neuropathol Exp Neurol 39: 475–489

    Google Scholar 

  • Aguilar MJ, Kamoshita S, Landing BH, Boder E, Sedgwick RP (1968) Pathological observations in ataxia-telangiectasia. A report on 5 cases. J Neuropathol Exp Neurol 27: 659–676

    PubMed  CAS  Google Scholar 

  • Albrecht S, von Deimling A, Pietsch T, Giangaspero F, Brandner S, Kleihues P, Wiestier OD (1994) Microsatellite analysis of loss of heterozygosity on chromosome 9q, 11p and 17p in medullo-blastomas. Neuropathol Appl Neurobiol 20: 74–81

    PubMed  CAS  Google Scholar 

  • Alimena G, Avvisati G, De Cuia MR, Gallo E, Novelli G, Dallapiccola B (1983) Retrospective diagnosis of a Fanconi’s anemia patient by dyepoxybutane (DEB) test results in parents. Haematologica 68: 97–103

    PubMed  CAS  Google Scholar 

  • Allen C, Meyn MS (1995) A low threshold for mutagen-induced apoptosis in Fanconi anemia cells. Am J Hum Genet 57: A46

    Google Scholar 

  • Altay C, Sevgi Y, Pirnar T (1975) Letter: Fanconi’s anemia in offspring of patient with congenital radial and carpal hypoplasia. N Engl J Med 293: 151–152

    PubMed  CAS  Google Scholar 

  • Alter BP (1992) Fanconi’s anemia. Current concepts. Am J Pediatr Hematol Oncol 14: 170–176

    PubMed  CAS  Google Scholar 

  • Alter BP (1994a) Clinical features of Fanconi’s anemia. In: Young NS, Alter BP (eds) Aplastic anemia: acquired and inherited. Saunders, Philadelphia, pp 275–309

    Google Scholar 

  • Alter BP (1994b) Inherited bone marrow failure syndromes: introduction. In: Young NS, Alter BP (eds) Aplastic anemia: acquired and inherited. Saunders, Philadelphia, pp 271–274

    Google Scholar 

  • Alter BP (1994c) Pathophysiology of Fanconi’s anemia. In: Young NS, Alter BP (eds) Aplastic anemia: acquired and inherited. Saunders, Philadelphia, 310–324

    Google Scholar 

  • Alter BP, Scalise A, McCombs J, Najfeld V (1993) Clonal chromosomal abnormalities in Fanconi’s anemia: what do they really mean? Br J Haematol 85: 627–630

    PubMed  CAS  Google Scholar 

  • Amromin GD, Boder E, Teplitz R (1979) Ataxia-telangiectasia with a 32 year survival. A clinicopathological report. J Neuropathol 38: 621–643

    CAS  Google Scholar 

  • Anderson CW (1993) DNA damage and the DNA-activated protein kinase. Trends Biochem Sci 18: 433–437

    PubMed  CAS  Google Scholar 

  • Arlett CF, Harcourt SA (1978) Cell killing and mutagenesis in repair-defective human cells. In: Hanawalt PC, Friedberg EC, Fox CF (eds) DNA repair mechanisms. Academic, New York, pp 633–636

    Google Scholar 

  • Arlett CF, Harcourt SA (1980) Survey of radiosensitivity in a variety of human cell strains. Cancer Res 40: 926–932

    PubMed  CAS  Google Scholar 

  • Arlett CF, Priestley A (1985) An assessment of the radiosensitivity of ataxia-telangiectasia heterozygotes. In: Gatti RA, Swift M (eds) Ataxia-telangiectasia: genetics, neuropathology, and immunology of a degenerative disease of childhood. Liss, New York, pp 101–109

    Google Scholar 

  • Arlett CF, Green MH, Priestley A, Harcourt SA, Mayne LV (1988) Comparative human cellular radiosensitivity. I. The effect of SV40 transformation and immortalisation on the gamma-irradiation survival of skin derived fibroblasts from normal individuals and form ataxia-telangiectasia patients and heterozygotes. Int J Radiat Biol 54: 911–928

    PubMed  CAS  Google Scholar 

  • Arlett CF, Cole J, Green MHL (1989) Radiosensitive individuals in the population. In: Baverstock KF, Stather JW (eds) Low dose radiation: biological bases of risk assessment. Taylor and Francis, London, pp 240–252

    Google Scholar 

  • Auerbach AD (1993) Fanconi anemia diagnosis and the diepoxybutane (DEB) test (editorial). Exp Hematol 21: 731–733

    PubMed  CAS  Google Scholar 

  • Auerbach AD (1995) Fanconi anemia. Dermatol Clin 13: 41–49

    PubMed  CAS  Google Scholar 

  • Auerbach AD, Allen RG (1991) Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet Cytogenet 51: 1–12

    PubMed  Google Scholar 

  • Auerbach AD, Wolman SR (1976) Susceptibility of Fanconi’s anemia fibroblasts to chromosome damage by carcinogens. Nature 261: 494–496

    PubMed  CAS  Google Scholar 

  • Auerbach AD, Wolman SR (1978) Carcinogen-induced chromosome breakage in Fanconi’s anaemia heterozygous cells. Nature 271: 69–71

    PubMed  CAS  Google Scholar 

  • Auerbach AD, Wolman S (1979) Carcinogen-induced chromosome breakage in chromosome instability syndromes. Cancer Genet Cytogenet 1: 21–28

    CAS  Google Scholar 

  • Auerbach AD, Adler B, Chaganti RS (1981) Prenatal and postnatal diagnosis and carrier detection of Fanconi anemia by a cytogenetic method. Pediatrics 67: 128–135

    PubMed  CAS  Google Scholar 

  • Auerbach AD, Rogatko A, Schroeder-Kurth TM (1989) International Fanconi Anemia Registry: relation of clinical symptoms to diepoxybutane sensitivity. Blood 73: 391–396

    PubMed  CAS  Google Scholar 

  • Aurias A, Dutrillaux B (1986) Acquired inversions in human leucocytes. Ann Genet (Paris) 29: 203–206

    PubMed  CAS  Google Scholar 

  • Aurias A, Dutrillaux B, Buriot D, Lejeune J (1980) High frequencies of inversions and translocations of chromosome 7 and 14 in ataxia telangiectasia Mutat Res 69: 369–374

    PubMed  CAS  Google Scholar 

  • Aurias A, Antoine J-L, Assathiany R, Odievre M, Dutrillaux B (1985a) Radiation sensitivity of Bloom’s syndrome lymphocytes during S and G2 phases. Cancer Genet Cytogenet 16: 131–136

    PubMed  CAS  Google Scholar 

  • Aurias A, Dutrillaux AM, Dutrillaux B, Herpin F, Lamoliatte E, Lombard M, Muleris M, Paravatou M, Prieur M, Prod’homme M, Sportes M, Viegas-Pequignot E, Voloboriev V (1985b) Inversion (14) (q12qter) or (q11.2q32.3): the most frequently acquired rearrangement in lymphocytes. Hum Genet 71: 19–21

    PubMed  CAS  Google Scholar 

  • Austin CA, Sng JH, Patel S, Fisher LM (1993) Novel Hela topoisomerase II is the II beta isoform: complete coding sequence and homology with other type II topoisomerases. Biochim Biophys Acta 1172: 283–291

    PubMed  CAS  Google Scholar 

  • Averbeck D, Averbeck S (1985) Genotoxic effects of mono-and bifunctional furocoumarins in yeast: involvement of DNA photoaddition and oxygen dependent reactions. In: Bensasson RV, Jori G, Land FD, Truscott TG (eds) Primary photo-processes in biology and medicine. Plenum, New York, pp 295–300

    Google Scholar 

  • Bagby GC, Jr., Segal GM, Auerbach AD, Onega T, Keeble W, Heinrich MC (1993) Constitutive and induced expression of hematopoietic growth factor genes by fibroblasts from children with Fanconi anemia. Exp Hematol 21: 1419–1426

    PubMed  Google Scholar 

  • Bagnara GP, Bonsi L, Strippoli P, Ramenghi U, Timeus F, Bonifazi F, Bonafe M, Tonelli R, Bubola G, Brizzi MF et al (1993) Production of interleukin 6, leukemia inhibitory factor and granulocytemacrophage colony stimulating factor by peripheral blood mononuclear cells in Fanconi’s anemia. Stem Cells (Dayt) 11 [Suppl 2]: 137–143

    Google Scholar 

  • Baker SJ, Reddy EP (1996) Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene 12: 1–10

    PubMed  CAS  Google Scholar 

  • Bale AE, Gailani MR, Leffell DJ (1994) Nevoid basal cell carcinoma syndrome. J Invest Dermatol 103: 126S–130S

    PubMed  CAS  Google Scholar 

  • Bargman GJ, Shahidi NT, Gilbert EF, Opitz JM (1977) Studies of malformation syndromes of man. XLVII. Disappearance of spermatogonia in the Fanconi anemia syndrome. Eur J Pediatr 125: 163–168

    PubMed  CAS  Google Scholar 

  • Bartram CR, Koske-Westphal T, Passarge E (1976) Chromatid exchanges in ataxia telangiectasia, Bloom syndrome, Werner syndrome, and xeroderma pigmentosum. Ann Hum Genet 40: 79–86

    PubMed  CAS  Google Scholar 

  • Bates PR, Lavin MF (1989) Comparison of gamma-radiation-induced accumulation of ataxia telangiectasia and control cells in G2 phase. Mutat Res 218: 165–170

    PubMed  CAS  Google Scholar 

  • Battista JR, Donnelly CE, Ohta T, Walker GC (1990) The SOS response and induced mutagenesis. Prog Clin Biol Res 340A: 169–178

    PubMed  CAS  Google Scholar 

  • Baumann T (1951) Konstitutionelle Panmyelopathose mit multiplen Abartungen (Fanconi-Syndrome) Ann Paediatr (Basel) 177: 142–174

    PubMed  CAS  Google Scholar 

  • Beamish H, Lavin MF (1994) Radiosensitivity in ataxia-telangiectasia: anomalies in radiation-induced cell cycle delay. Int J Radiat Biol 65: 175–184

    PubMed  CAS  Google Scholar 

  • Begg AC, Russell NS, Knakan H, Lebesque JV (1993) Lack of correlation of human fibroblast radio-sensitivity in vitro with early skin reactions in patients undergoing radiotherapy. Int J Radiat Biol 64: 393–405

    PubMed  CAS  Google Scholar 

  • Bender BA, Rary JM, Kale RP (1985) G2 chromosomal radiosensitivity in ataxia telangiectasia lymphocytes. Mutat Res 152: 39–47

    PubMed  CAS  Google Scholar 

  • Bennett CB, Rainbow AJ (1988) Delayed expression of enhanced reactivation and decreased mutagenesis of UV-irradiated adenovirus in UV-irradiated ataxia telangiectasia fibroblasts. Mutagenesis 3: 389–395

    PubMed  CAS  Google Scholar 

  • Berger R, Coniat ML (1989) Cytogenetic studies in Fanconi anemia induced chromosomal breakage and cytogenetics. In: Schroeder-Kurth TM, Auerbach AD, Obe G (eds) Fanconi anemia. Springer, Berlin Heidelberg New York, pp 93–99

    Google Scholar 

  • Berger R, Bernheim A, Le Coniat M, Vecchione D, Schaison G (1980) Effect of chlormethin chlorhydrate on the chromosomes in Fanconi’s anemia: application to diagnosis and detection heterozygotes. CR Seances Acad Sci D 290: 457–459

    CAS  Google Scholar 

  • Bertazzoni U, Scovassi AI, Stefanini M, Giulotto E, Spadari S, Pedrini AM (1978) DNA polymerases alpha beta and gamma in inherited diseases affecting DNA repair. Nucleic Acids Res 5: 2189–2196

    PubMed  CAS  Google Scholar 

  • Bethwaite PB, Koreth J, Herrington CS, McGee JO (1995) Loss of heterozygosity occurs at the D11S29 locus on chromosome 11q23 in invasive cervical carcinoma. Br J Cancer 71: 814–818

    PubMed  CAS  Google Scholar 

  • Bigbee WL, Langlois RG, Swift M, Jensen RH (1989) Evidence for an elevated frequency of in vivo somatic cell mutations in ataxia telangiectasia. Am J Hum genet 44: 402–408

    PubMed  CAS  Google Scholar 

  • Bigbee WL, Jensen RH, Grant SG, Langlois RG, Olsen DA, Auerbach A (1991) Evidence for elevated in vivo somatic mutation at the glycophorin A locus in Fanconi anemia. Am J Hum Genet 49 [Suppl]: 446

    Google Scholar 

  • Bigelow SB, Rary JM, Bender MA (1979) G2 chromosomal radiosensitivity in Fanconi’s anemia. Mutat Res 63: 189–199

    PubMed  CAS  Google Scholar 

  • Birch JM, Hartley AL, Tricker KJ, Prosser J, Condie A, Kelsey AM, Harris M, Morris PH, Binchy A, Crowther D, Craft AW, Enden OB, Evans DGR, Thompson E, Mann JR, Martin J, Mitchell ELD, Santibáñez-Koref MF (1994) Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res 54: 1298–1304

    PubMed  CAS  Google Scholar 

  • Blocher D, Sigut D, Hannan MA (1991) Fibroblasts from ataxia telangiectasia (AT) and AT heterozygotes show an enhanced level of residual DNA double-strand breaks after low dose-rate gamma-irradiation as assayed by pulsed field gel electrophoresis. Int J Radiat Biol 60: 791–802

    PubMed  CAS  Google Scholar 

  • Bloom D (1954) Congenital telangiectatic erythema resembling lupus erythematosus in dwarfs. Am J Dis Child 88: 754–758

    CAS  Google Scholar 

  • Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gottlieb TM, Mizuta R, Varghese AJ, Alt FW, Jeggo PA et al (1995) Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80: 813–823

    PubMed  CAS  Google Scholar 

  • Boder E., Sedgwick RP (1957) Ataxia-telangiectasia. A familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. A preliminary report on 7 children, an autopsy, and a case history. Univ South Calif Med Bull 9: 15–28

    Google Scholar 

  • Boder E, Sedgwick RP (1958) Ataxia-telangiectasia. A familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics 21: 526–554

    PubMed  CAS  Google Scholar 

  • Boder E, Sedgwick RP (1963) Ataxia-telangiectasia. A review of 101 cases In: Walsh G (ed) Little club clinics in developmental medicine. Heinemann, London, pp 110–118

    Google Scholar 

  • Boice JD, Miller RW (1992) Risk of breast cancer in ataxia-telangiectasia (letter). N Engl J Med 326: 1357–1358

    PubMed  Google Scholar 

  • Borresen AL, Andersen TI, Tretli S, Heiberg A, Moller P (1990) Breast cancer and other cancers in Norwegian families with ataxia-telangiectasia. Genes Chromosom Cancer 2: 339–340

    PubMed  CAS  Google Scholar 

  • Borsellino N, Belldegrun A, Bonavida B (1995) Endogenous interleukin 6 is a resistance factor for cisdiamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res 55: 4633–4639

    PubMed  CAS  Google Scholar 

  • Boulikas T (1995) Phosphorylation of transcription factors and control of the cell cycle. Crit Rev Eukaryotic Gene Expr 5: 1–77

    CAS  Google Scholar 

  • Brainard E, Herzing LBK, Bainton J, Meyn MS (1991) A common feature of the chromosome instability syndromes: increased spontaneous intrachromosomal mitotic recombination. Am J Hum Genet 49A: 449

    Google Scholar 

  • Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, et al (1994) Mutations in the DNA mismatch repair gene homolog hMLH1 is associated with hereditary nonpolyposis colon cancer. Nature 368: 258–261

    PubMed  CAS  Google Scholar 

  • Bubley GJ, Schnipper LE (1987) Effects of Bloom’s syndrome fibroblasts on genetic recombination and mutagenesis of herpes simplex virus type 1. Somat Cell Mol Genet 13: 111–117

    PubMed  CAS  Google Scholar 

  • Burger RM, Drlica D, Birdsall B (1994) The DNA cleavage of iron bleomycin. J Biol Chem 269: 25978–25985

    PubMed  CAS  Google Scholar 

  • Burnet NG, Nyman J, Turesson I, Wurm R, Yarnold JR, Peacock JH (1992) Prediction of normal-tissue tolerance to radiotherapy from in vitro cellular radiation sensitivity. Lancet 339: 1590–1591

    Google Scholar 

  • Butturini A, Gale RP, Verlander PC, Adler-Brecher B, Gillio AP, Auerbach AD (1994) Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood 84: 1650–1655

    PubMed  CAS  Google Scholar 

  • Buul PPV, Rooij DGD, Zandman IM, Grigorova M, Duyn-Goedhart AV (1995) X-ray-induced chromosomal aberrations and cell killing in somatic and germ cells of the scid mouse. Int J Radiat Biol 67: 549–555

    PubMed  Google Scholar 

  • Canman CE, Wolff AC, Chen CY, Fornace AJ Jr, Kastan MB (1994) The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia. Cancer Res 54: 5054–5058

    PubMed  CAS  Google Scholar 

  • Carter SL, Negrini M, Baffa R, Gillum DR, Rosenberg AL, Schwartz GF, Croce CM (1994) Loss of heterozygosity at 11q22–q23 in breast cancer. Cancer Res 54: 6270–6274

    PubMed  CAS  Google Scholar 

  • Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie B, Murphree A, Strong LC, White RL (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305: 779–784

    PubMed  CAS  Google Scholar 

  • Cervenka J, Hirsch BA (1983) Cytogenetic differentiation of Fanconi anemia, idiopathic aplastic anemia, and Fanconi anemia heterozygotes. Am J Med Genet 15: 211–223

    PubMed  CAS  Google Scholar 

  • Chaganti RSK, Schonberg S, German J (1974) A manyfold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc Natl Acad Sci USA 71: 4508–4512

    PubMed  CAS  Google Scholar 

  • Chaganti SR, Gaidano G, Louie DC, Dalla-Favera R, Chaganti RS (1995) Diffuse large cell lymphomas exhibit frequent deletions in 9p21–22 and 9q31–34 regions. Genes Chromosom Cancer 12: 32–36

    PubMed  CAS  Google Scholar 

  • Chan JY, Becker FF, German J, Ray JH (1987) Altered DNA ligase I activity in Bloom’s syndrome cells. Nature 325: 357–359

    PubMed  CAS  Google Scholar 

  • Chen LC, Matsumura K, Deng G, Kurisu W, Ljung BM, Lerman MI, Waldman FM, Smith HS (1994) Deletion of two separate regions on chromosome 3p in breast cancers. Cancer Res 54: 3021–3024

    PubMed  CAS  Google Scholar 

  • Chen M, Cumming R, Krasnoshtein F, Savoia A, Lightfoot J, Santos C, Parker L, Wong J, Joyner A, Buchwald M (1995) Molecular genetics of Fanconi anemia. J Cell Biochem 21A: 272

    Google Scholar 

  • Chen PC, Lavin MF, Kidson C, Moss D (1978) Identification of ataxia telangiectasia heterozygotes, a cancer prone population. Nature 274: 484–486

    PubMed  CAS  Google Scholar 

  • Chessa L, Lisa A, Fiorani O, Zei G (1994) Ataxia-telangiectasia in Italy: genetic analysis. Int J Radiat Biol 66: S31–33

    PubMed  CAS  Google Scholar 

  • Chu J-Y, Ho JE, Monteleone PL, O’Conner DM (1979) Technicium colloid bone marrow imaging in Fanconi’s anemia. Pediatrics 64: 952–954

    Google Scholar 

  • Claus EB, Risch N, Thompson WD (1991) Genetic analysis of breast cancer in the cancer and steroid hormone study. Am J Hum Genet 48: 232–242

    PubMed  CAS  Google Scholar 

  • Cohen MM, Levy HP (1969) Chromosome instability syndromes. Adv Hum Genet 18: 43–149

    Google Scholar 

  • Cohen MM, Shaham M, Dagan J, Shmueli E, Kohn G (1975) Cytogenetic investigations in families with ataxia-telangiectasia. Cytogenet Cell Genet 15: 338–356

    PubMed  CAS  Google Scholar 

  • Cohen MM, Simpson SJ, Honig GR, Maurer HS, Nicklas JW, Martin AO (1982) The identification of Fanconi anemia genotypes by clastogenic stress. Am J Hum Genet 34: 794–810

    PubMed  CAS  Google Scholar 

  • Cole J, Arlett CF (1994) Cloning efficiency and spontaneous mutant frequency in circulating T-lymphocytes in ataxia-telangiectasia patients. Int J Radiat Biol 66: S123–131

    PubMed  CAS  Google Scholar 

  • Cole J, Arlett CF, Green MH, Harcourt SA, Priestley A, Henderson L, Cole H, James SE, Richmond F (1988) Comparative human cellular radiosensitivity. II. The survival following gamma-irradiation of unstimulated (G0) T-lymphocytes, T-lymphocyte lines, lymphoblastoid cell lines and fibroblasts from normal donors, from ataxia-telangiectasia patients and from ataxia-telangiectasia heterozygotes. Int J Radiat Biol 54: 929–943

    PubMed  CAS  Google Scholar 

  • Cornforth MN, Bedford JS (1985) On the nature of a defect in cells from individuals with ataxia-telangiectasia. Science 227: 1589–1591

    PubMed  CAS  Google Scholar 

  • Cortessis V, Ingles S, Millikan R, Diep A, Gatti RA, Richardson L, Thompson WD, Paganini-Hill A, Sparkes RS, Haile RW (1993) Linkage analysis of DRD2, a marker linked to the ataxia-telangiectasia gene, in 64 families with premenopausal bilateral breast cancer. Cancer Res 53: 5083–5086

    PubMed  CAS  Google Scholar 

  • Costa ND, Thacker J (1993) Response of radiation-sensitive human cells to defined DNA breaks. Int J Radiat Biol 64: 523–529

    PubMed  CAS  Google Scholar 

  • Cowdell RH, Phizackerly PJR, Pyke DA (1995) Constitutional anemia (Fanconi’s syndrome) and leukemia in two brothers. Blood 10: 788–801

    Google Scholar 

  • Cox R, Masson WK, Debenham PG, Webb MBT (1984) The use of recombinant DNA plasmids for the determination of DNA-repair and recombination in cultured mammalian cells. Br J Cancer 46 [Suppl VI]: 67–72

    Google Scholar 

  • Dallapiccola B, Magnani M, Novelli G, Mandelli F (1984) Increased activity of glutathione S-transferase and fast decay of reduced glutathione in Fanconi’s anemia erythrocytes. Acta Haematol 71: 143–144

    PubMed  CAS  Google Scholar 

  • Dallapiccola B, Porfirio B, Mokini V, Alimena G, Isacchi G, Gandini E (1985) Effects of oxidants and antioxidants on chromosomal breakage in Fanconi anemia lymphocytes. Hum Genet 69: 62–65

    PubMed  CAS  Google Scholar 

  • Day RS, Giuffrida AS, Dingman CW (1975) Repair by human cells of adenovirus-2 damaged by psoralen plus near ultraviolet light treatment. Mutat Res 33: 311–320

    PubMed  CAS  Google Scholar 

  • Dean SW, Fox M (1983) Investigation of the cell cycle response of normal and Fanconi’s anaemia fibroblasts to nitrogen mustard using flow cytometry. J Cell Sci 64: 265–279

    PubMed  CAS  Google Scholar 

  • Debenham PG, Webb MB, Stretch A, Thacker J (1988) Examination of vectors with two dominant, selectable genes for DNA repair and mutation studies in mammalian cells. Mutat Res 199: 145–158

    PubMed  CAS  Google Scholar 

  • Degan P, Bonassi S, De Caterina M, Korkina LG, Pinto L, Scopacasa F, Zatterale A, Calzone R, Pagano G (1995) In vivo accumulation of 8-hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi’s anaemia families. Carcinogenesis 16: 735–741

    PubMed  CAS  Google Scholar 

  • Dehazya P, Sirover MA (1986) Regulation of hypoxanthine DNA glycosylase in normal human and Bloom’s syndrome fibroblasts. Cancer Res 46: 3756–3761

    PubMed  CAS  Google Scholar 

  • Deng GR, He LW, Lin BY (1994) Loss of heterozygosity at different chromosomes in patients with breast cancer. Chung Hua I Hsueh Tsa Chih 74: 31–34

    PubMed  CAS  Google Scholar 

  • Devilee P, van Vliet M, Van Sloun P, Kuipers Dijkshoorn N, Hermans J, Perason PL, Cornelisse CJ (1991) Allelotype of human breast carcinoma: a second major site for loss of heterozygosity is on chromosome 6q. Oncogene 6: 1705–1711

    PubMed  CAS  Google Scholar 

  • Dive C, Evans CA, Whetton AD (1992) Induction of apoptosis — new targets for cancer chemotherapy. Semin Cancer Biol 3: 417–427

    PubMed  CAS  Google Scholar 

  • Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. JNCI 66: 1191–1308

    PubMed  CAS  Google Scholar 

  • Dosik H, Hsu LY, Todaro GJ, Lee SL, Hirschhorn K, Selirio ES, Alter AA (1970) Leukemia in Fanconi’s anemia: cytogenetic and tumor virus susceptibility studies. Blood 36: 341–352

    PubMed  CAS  Google Scholar 

  • Dritschilo A, Brennan T, Weichselbaum RR, Mossman KL (1984) Response of human fibroblasts to low dose rate gamma irradiation. Radiat Res 100: 387–395

    PubMed  CAS  Google Scholar 

  • Duckworth-Rysiecki G, Taylor AMR (1985) Effects of ionizing radiation of cells from Fanconi’s anemia patients. Cancer Res 45: 416–420

    PubMed  CAS  Google Scholar 

  • Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76: 1013–1023

    PubMed  CAS  Google Scholar 

  • Dutrillaux B, Aurias A, Dutrillaux AM, Buriot D, Prieur M (1982) The cell cycle of lymphocytes in Fanconi anemia. Hum Genet 62: 327–332

    PubMed  CAS  Google Scholar 

  • Eady JJ, Peacock JH, McMillan TJ (1992) Host cell reactivation of gamma-irradiated adenovirus 5 in human cell fines of varying radiosensitivity. Br J Cancer 66: 113–118

    PubMed  CAS  Google Scholar 

  • Easton D, Ford D, Peto J (1993) Inherited susceptibility to breast cancer. Cancer Surv 18: 95–113

    PubMed  CAS  Google Scholar 

  • Easton DF (1994a) Cancer risks in A-T heterozygotes. Int J Radiat Biol 66: S177–182

    PubMed  CAS  Google Scholar 

  • Easton DF (1994b) The inherited component of cancer. Br Med Bull 50: 527–535

    PubMed  CAS  Google Scholar 

  • el-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y (1994) WAF1/CIP1 is induced in p53-mediated Gj arrest and apoptosis. Cancer Res 54: 1169–1174

    PubMed  CAS  Google Scholar 

  • el-Naggar AK, Lee MS, Wang G, Luna MA, Goepfert H, Batsakis JG (1993) Polymerase chain reaction-based restriction fragment length polymorphism analysis of the short arm of chromosome 3 in primary head and neck squamous carcinoma. Cancer 72: 881–886

    PubMed  CAS  Google Scholar 

  • Ellis NA, Groden J, Ye T-Z, Straughen J, Lennon DJ, Ciocci S, Proytcheva M, German J (1995a) The Bloom’s syndrome gene product is homologous to recQ helicases. Cell 83: 655–666

    PubMed  CAS  Google Scholar 

  • Ellis NA, Lennon DJ, Proytcheva M, Alhadeff B, Henderson EE, German J (1995b) Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells. Am J Hum Genet 57: 1019–1027

    PubMed  CAS  Google Scholar 

  • Enoch T, Norbury C (1995) Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Sci 20: 426–430

    PubMed  CAS  Google Scholar 

  • Evans HJ, Adans AC, Clarkson JM, German J (1978) Chromosome aberrations and unscheduled DNA synthesis in X- and UV-irradiated lymphocytes from a boy with Bloom’s syndrome and a man with xeroderma pigmentosum. Cytogenet Cell Genet 20: 124–140

    PubMed  CAS  Google Scholar 

  • Evans HJ, Ray JH, German J (1983) Bloom’s syndrome: Evidence for an increased mutation frequency in vivo. Science 221: 851–853

    PubMed  Google Scholar 

  • Evans MK, Bohr VA (1994) Gene-specific DNA repair of UV-induced cyclobutane pyrimidine dimers in some cancer-prone and premature-aging human syndromes. Mutat Res 314: 221–231

    PubMed  CAS  Google Scholar 

  • Eyre JA, Gardner-Medwin D, Summerfield GP (1988) Leukoencephalopathy after prophylactic radiation for leukaemia in ataxia telangiectasia. Arch Dis Child 63: 1079–1080

    PubMed  CAS  Google Scholar 

  • Fanconi G (1927) Familiäre infantile perniziösartige Anämie (perniziöses Blutbild und Konstitution). Jahrb Kinderheilkd 117: 257–280

    Google Scholar 

  • Fanconi G (1967) Familial constitutional panmyelopathy, Fanconi’s anemia (F.A.). Semin Hematol 4: 233–240

    PubMed  CAS  Google Scholar 

  • Feigin RD, Vietti TJ, Wyatt RG, Kaufmann DG, Smith CH (1970) Ataxia telangiectasia with granulocytopenia. J Pediatr 77: 431–438

    PubMed  CAS  Google Scholar 

  • Fendrick JL, Hallick LM (1984) Psoralen photoinactivation of herpes simplex virus: monoadduct and cross-link repair by xeroderma pigmentosum and Fanconi’s anemia cells. J Invest Dermatol 83: 96s–101s

    PubMed  CAS  Google Scholar 

  • Fishel R, Lescoe MK, Rao MRS, Copeland NG, Jenkins JA, Barber J, Kane M, Kolodner R (1993) The human mutator gene homology MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038

    PubMed  CAS  Google Scholar 

  • Ford D, Easton DF (1995) The genetics of breast and ovarian cancer. Br J Cancer 72: 805–812

    PubMed  CAS  Google Scholar 

  • Fornace AJ Jr, Little JB, Weichselbaum RR (1979) DNA repair in a Fanconi’s anemia fibroblast cell strain. Biochem Biophys Acta 561: 99–109

    PubMed  CAS  Google Scholar 

  • Fritz E, Herzing L, Elsea S, Meyn MS (1996) A novel human cDNA that complements the ataxia-telangiectasia phenotype is homologous to the S. cerevisiae Top3 topoisomerase. Proc Natl Acad Sci USA (in press)

    Google Scholar 

  • Frorath B, Schmidt-Preuss U, Siemers U, Zollner M, Rudiger HW (1984) Heterozygous carriers for Bloom syndrome exhibit a spontaneously increased micronucleus formation in cultured fibroblasts. Hum Genet 67: 52–55

    PubMed  CAS  Google Scholar 

  • Fujiwara Y (1982) Defective repair of mitomycin C crosslinks in Fanconi’s anemia and loss in confluent normal human and xeroderma pigmentosum cells. Biochim Biophys Acta 699: 217–225

    PubMed  CAS  Google Scholar 

  • Fujiwara Y, Tatsumi M (1977) Cross-link repair in human cells and its possible defect in Fanconi’s anemia cells. J Mol Biol 113: 635–649

    PubMed  CAS  Google Scholar 

  • Galloway SM, Evans HJ (1975) Sister chromatid exchange in human chromosomes from normal individuals and patients with ataxia telangiectasia. Cyto Cell Genet 15: 17–29

    CAS  Google Scholar 

  • Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R (1994) The yeast type I topoisomerase Top3 interacts with SGS1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14: 8391–8398

    PubMed  CAS  Google Scholar 

  • Garriga S, Crosby WH (1959) The incidence of leukemia in families of patients with hypoplasia of the marrow. Blood 14: 1008–1014

    PubMed  CAS  Google Scholar 

  • Gentner NE, Morrison B (1989) Determination of the proportion of persons in the population who exhibit abnormal sensitivity to ionising radiation low dose radiation. Taylor and Francis, London, pp 253–262

    Google Scholar 

  • German J (1964) Cytological evidence for crossing-over in vitro in human lymphoid cells. Science 144: 298–301

    PubMed  CAS  Google Scholar 

  • German J (1969) Bloom’s syndrome. I. Genetical and clinical observations in the first twenty-seven patients. Am J Hum Genet 21: 196–227

    PubMed  CAS  Google Scholar 

  • German J (1974) Bloom’s syndrome. II. The prototype of human diseases predisposing to chromosome instability and cancer. In: German J (ed) Chromosomes and cancer. Wiley, New York

    Google Scholar 

  • German J (1983) Patterns of neoplasia associated with the chromosome-breakage syndromes. In: German J (ed) Chromosome mutation and neoplasia. Liss, New York, pp 97–134

    Google Scholar 

  • German J (1993) Bloom syndrome: a Mendelian prototype of somatic mutational disease. Medicine (Baltimore) 72: 393–406

    CAS  Google Scholar 

  • German J (1995) Bloom’s syndrome. Dermatol Clin 13: 7–18

    PubMed  CAS  Google Scholar 

  • German J, Passarge E (1989) Bloom’s syndrome. XII. Report from the Registry for 1987. Clin Genet 35: 57–69

    PubMed  CAS  Google Scholar 

  • German J, Schonberg S (1980) Bloom’s syndrome. IX. Review of cytological and biochemical aspects. In: Gelboin HV, MacMahon B, Matsushima T, Sugimura T, Takayama S, Takebe H (eds) Genetic and environmental factors in experimental and human cancer. Japan Scientific Societies Press, Tokyo, pp 175–186

    Google Scholar 

  • German J, Takebe H (1989) Bloom’s syndrome. XIV. The disorder in Japan. Clin Genet 35: 93–110

    PubMed  CAS  Google Scholar 

  • German J, Archibald R, Bloom D (1965) Chromosomal breakage in a rare and probably genetically determined syndrome of man. Science 148: 506–507

    PubMed  CAS  Google Scholar 

  • German J, Bloom D, Passarge E, Fried K, Goodman RM, Katzenellenbogen I, Laron Z, Legum C, Levin S, Wahrman J (1977a) Bloom’s syndrome. VI. The disorder in Israel and an estimation of the gene frequency in the Ashkenazim. Am J Hum Genet 29: 553–562

    PubMed  CAS  Google Scholar 

  • German J, Schonberg S, Louie E, Chaganti RSK (1977b) Bloom’s syndrome. IV. Sister chromatid exchanges in lymphocytes. Am J Hum Genet 29: 248–255

    PubMed  CAS  Google Scholar 

  • German J, Roe AM, Leppert MF, Ellis NA (1994) Bloom syndrome: an analysis of consanguineous families assigns the locus mutated to chromosome band 15q26.1. Proc Natl Acad Sci U S A 91: 6669–6673

    PubMed  CAS  Google Scholar 

  • Giampietro PF, Adler-Brecher B, Verlander PC, Pavlakis SG, Davis JG, Auerbach AD (1993) The need for more accurate and timely diagnosis in Fanconi anemia: a report from the International Fanconi Anemia Registry. Pediatrics 91: 1116–1120

    PubMed  CAS  Google Scholar 

  • Giampietro PF, Verlander PC, Maschan A et al (1994) Fanconi anemia: a model for somatic gene mutation during development. Am J Med Genet 52: 36

    Google Scholar 

  • Gibbons B, Scott D, Hungerford JL, Cheung KL, Harrison C, Attard-Montalto S, Evans M, Birch JM, Kingston JE (1995) Retinoblastoma in association with the chromosome breakage syndromes Fanconi’s anaemia and Bloom’s syndrome: clinical and cytogenetic findings. Clin Genet 47: 311–317

    PubMed  CAS  Google Scholar 

  • Gille JJ, Wortelboer HM, Joenje H (1987) Antioxidant status of Fanconi anemia fibroblasts. Hum Genet 77: 28–31

    PubMed  CAS  Google Scholar 

  • Glanz A, Fraser FC (1982) Spectrum of anomalies in Fanconi anaemia. J Med Genet 19: 412–416

    PubMed  CAS  Google Scholar 

  • Gluckman E, Devergie A, Dutreix J (1983) Radiosensitivity in Fanconi anaemia: application to the conditioning regimen for bone marrow transplantation. Br J Haematol 54: 431–440

    PubMed  CAS  Google Scholar 

  • Gluckman E, Auerbach AD, Horowitz MM, Sobocinski KA, Ash RC, Bortin MM, Butturini A, Camitta BM, Champlin RE, Friedrich W et al (1995) Bone marrow transplantation for Fanconi anemia. Blood 86: 2856–2862

    PubMed  CAS  Google Scholar 

  • Gmyrek D, Otto FM, Sylla-Rapoport I (1965) On the familial occurrence of Fanconi anemia and thrombocytopenia with malformations (remarks on the therapy of Fanconi anemia). Monatsschr Kinderheilkd 113: 542–552

    PubMed  CAS  Google Scholar 

  • Goodrich DW, Lee WH (1990) The molecular genetics of retinoblastoma. Cancer Surv 9: 529–564

    PubMed  CAS  Google Scholar 

  • Gotoff SP, Amirmokri E, Liebner EJ (1967) Neoplasia, untoward response to X-irradiation, and tuberous sclerosis. Am J Dis Child 114: 617–625

    PubMed  CAS  Google Scholar 

  • Gottlieb TM, Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72: 131–141

    PubMed  CAS  Google Scholar 

  • Gray JE (1992) Increased incidence of cancer in a small subset of the population: a new obstacle to screening mammography? Radiology 185: 285–286

    PubMed  CAS  Google Scholar 

  • Greenwell PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B, Petes TD (1995) TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82: 823–829

    PubMed  CAS  Google Scholar 

  • Groden J, German J (1992) Bloom’s syndrome. XVIII. Hypermutability at a tandem-repeat locus. Hum Genet 90: 360–367

    PubMed  CAS  Google Scholar 

  • Groden J, Nakamura Y, German J (1990) Molecular evidence that homologous recombination occurs in proliferating human somatic cells. Proc Natl Acad Sci USA 87: 4315–4319

    PubMed  CAS  Google Scholar 

  • Grompe M, Low M, Riefsteck C, Olson S, Whitney MA (1995) Generation and phenotypic characterization of mice disrupted for the Fanconi anemia group C gene. Am J Hum Genet 57: A51

    Google Scholar 

  • Gudmundsson J, Barkardottir RB, Eiriksdottir G, Baldursson T, Arason A, Egilsson V, Ingvarsson S (1995) Loss of heterozygosity at chromosome 11 in breast cancer: association of prognostic factors with genetic alterations. Br J Cancer 72: 696–701

    PubMed  CAS  Google Scholar 

  • Gustafson CE, Young J, Leggett B, Searle J, Chenevix-Trench G (1994) Loss of heterozygosity on the long arm of chromosome 11 in colorectal tumours. Br J Cancer 70: 395–397

    PubMed  CAS  Google Scholar 

  • Habuchi T, Devlin J, Elder PA, Knowles MA (1995) Detailed deletion mapping of chromosome 9q in bladder cancer: evidence for two tumour suppressor loci. Oncogene 11: 1671–1674

    PubMed  CAS  Google Scholar 

  • Hall EJ, Marchese MJ, Astor MB, Morse T (1986) Response of cells of human origin, normal and malignant, to acute and low dose rate irradiation. Int J Radiat Oncol Biol Phys 12: 655–659

    PubMed  CAS  Google Scholar 

  • Hall JD, Scherer K (1981) Repair of psoralen-treated DNA by genetic recombination in human cells infected with herpes simplex virus. Cancer Res 41: 5033–5038

    PubMed  CAS  Google Scholar 

  • Hallahan DE, Beckett MA, Kufe D (1990) The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int J Radiat Oncol Biol Phys 19: 69–74

    PubMed  CAS  Google Scholar 

  • Hampton GM, Mannermaa A, Winquist R, Alavaikko M, Blanco G, Taskinen PJ, Kiviniemi H, Newsham I, Cavenee WK, Evans GA (1994a) Loss of heterozygosity in sporadic human breast carcinoma: a common region between 11q22 and 11q23.3. Cancer Res 54: 4586–4589

    PubMed  CAS  Google Scholar 

  • Hampton GM, Penny LA, Baergen RN, Larson A, Brewer C, Liao S, Busby-Earle RM, Williams AW, Steel CM, Bird CC et al (1994b) Loss of heterozygosity in cervical carcinoma: subchromosomal localization of a putative tumor-suppressor gene to chromosome 11q22–q24. Proc Natl Acad Sci USA 91: 6953–6957

    PubMed  CAS  Google Scholar 

  • Hand R, German J (1975) A retarded rate of DNA chain growth in Bloom’s syndrome. Proc Natl Acad Sci USA 72: 758–762

    PubMed  CAS  Google Scholar 

  • Hang B, Yeung AT, Lambert MW (1993) A damage-recognition protein which binds to DNA containing interstrand cross-links is absent or defective in Fanconi anemia, complementation group A, cells. Nucleic Acids Res 21: 4187–4192

    PubMed  CAS  Google Scholar 

  • Hannan MA, Greer W, Smith BP, Sigut D, Ali MA, Amer MH (1991) Skin fibroblast cell lines derived from non-Hodgkin’s-lymphoma (NHL) patients show increased sensitivity to chronic gamma irradiation. Int J Cancer 47: 261–266

    PubMed  CAS  Google Scholar 

  • Hannan MA, Kunhi M, Einspenner M, Khan BA, al-Sedairy S (1994) Post-irradiation DNA synthesis inhibition and G2 phase delay in radiosensitive body cells from non-Hodgkin’s lymphoma patients: an indication of cell cycle defects. Mutat Res 311: 265–276

    PubMed  CAS  Google Scholar 

  • Harada Y, Katagiri T, Ito I, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y, Emi M (1994) Genetic studies of 457 breast cancers. Clinicopathologic parameters compared with genetic alterations. Cancer 74: 2281–2286

    PubMed  CAS  Google Scholar 

  • Hari KL, Santerre A, Sekelsky JJ, McKim KS, Boyd JB, Hawley RS (1995) The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell 82: 815–821

    PubMed  CAS  Google Scholar 

  • Hartley KO, Gell D, Smith GC, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW, Jackson SP (1995) DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82: 849–856

    PubMed  CAS  Google Scholar 

  • Hartwell LH (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71: 543–546

    PubMed  CAS  Google Scholar 

  • Hartewell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266: 1821–1828

    Google Scholar 

  • Harvey M, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A, Donehower LA (1993) Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet 5: 225–229

    PubMed  CAS  Google Scholar 

  • Harvey M, Vogel H, Morris D, Bradley A, Bernstein A, Donehower LA (1995) A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53-deficient mice. Nature Genet 9: 305–311

    PubMed  CAS  Google Scholar 

  • Hayashi K, Schmid W (1975) Tandem duplication of ql4 and dicentric formation by end-to-end chromosome fusion in ataxia telangiectasia. Humangenetik 30: 135–141

    PubMed  CAS  Google Scholar 

  • Heartlein MW, Tsuji H, Latt SA (1987) 5-Bromodeoxyuridine-dependent increase in sister chromatid exchange formation in Bloom’s syndrome is associated with reduction in topoisomerase II activity. Exp Cell Res 169: 245–254

    PubMed  CAS  Google Scholar 

  • Hecht F, Hecht BK (1990) Cancer in ataxia-telangiectasia patients. Cancer Genet Cytogenet 46: 9–19

    PubMed  CAS  Google Scholar 

  • Hecht F, Koler RD, Rigas DA, Dahnke GS, Case MP, Tisdale V, Miller RW (1966) Leukaemia and lymphocytes in ataxia-telangiectasia. Lancet 2: 1193

    Google Scholar 

  • Hecht F, McCaw BK, Koler RD (1973) Ataxia telangiectasia: clonal growth of translocation lymphocytes. N Engl J Med 289: 286–291

    PubMed  CAS  Google Scholar 

  • Heddle JA, Krepinsky AB, Marshall RR (1983) Cellular sensitivity to mutagens and carcinogens in the chromosome-breakage and other cancer-prone syndromes. In: German J (ed) Chromosome mutation and neoplasia. Liss, New York, pp 203–234

    Google Scholar 

  • Herbst RA, Larson A, Weiss J, Cavanee WK, Hampton GM, Arden KC (1995) A defined region of loss of heterozygosity at 11q23 in cutaneous malignant melanoma. Cancer Res 55: 2494–2496

    PubMed  CAS  Google Scholar 

  • Higurashi M, Conen PE (1971) In vitro chromosomal radiosensitivity in Fanconi’s anemia. Blood 38: 336–342

    PubMed  CAS  Google Scholar 

  • Hilgers G, Abrahams PJ, Schouten R, Cornelis JJ, Lehmann AR, Van der Eb AJ, Rommelaere J (1987) Cells of patients with ataxia telangiectasia show a normal capacity of radio-induced reactivation of damaged HSV-1 virus. CR Soc Biol (Paris) 181: 432–438

    CAS  Google Scholar 

  • Hilgers G, Abrahams PJ, Chen YQ, Schouten R, Cornelis JJ, Lowe JE, van der Eb AJ, Rommelaere J (1989) Impaired recovery and mutagenic SOS-like responses in ataxia telangiectasia cells. Mutagenesis 4: 271–276

    PubMed  CAS  Google Scholar 

  • Hill RD (1976) Familial cancer on a Scottish island. Br Med J 2: 401–402

    PubMed  CAS  Google Scholar 

  • Hoehn H, Kubbies M, Schindler D, Poot M, Rabinovitch PS (1989) BrdU-Hoechst flow cytometry links the cell kinetic defect of Fanconi anemia to oxygen hypersensitivity. In: Schroeder-Kurth TM, Auerbach AD, Obe G (eds) Fanconi anemia. Springer, Berlin Heidelberg New York, pp 161–173

    Google Scholar 

  • Hojo ET, van Diemen PC, Darroudi F, Natarajan AT (1995) Spontaneous chromosomal aberrations in Fanconi anaemia, ataxia telangiectasia fibroblast and Bloom’s syndrome lymphoblastoid cell lines as detected by conventional cytogenetic analysis and fluorescence in situ hybridisation (FISH) technique. Mutat Res 334: 59–69

    Google Scholar 

  • Huret JL, Tanzer J, Guilhot F, Frocrain-Herchkovitch C, Savage JR (1988) Karyotype evolution in the bone marrow of a patient with Fanconi anemia: breakpoints in clonal anomalies of this disease. Cytogenet Cell Genet 48: 224–227

    PubMed  CAS  Google Scholar 

  • Iizuka M, Sugiyama Y, Shiraishi M, Jones C, Sekiya T (1995) Allelic losses in human chromosome 11 in lung cancers. Genes Chromosomes Cancer 13: 40–46

    PubMed  CAS  Google Scholar 

  • Imaly JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240: 1302–1309

    Google Scholar 

  • Ishida R, Buchwald M (1982) Susceptibility of Fanconi’s anemia lymphoblasts to DNA-cross-linking and alkylating agents. Cancer Res 42: 4000–4006

    PubMed  CAS  Google Scholar 

  • Ishizaki K, Yagi T, Inoue M, Nikaido O, Takebe H (1981) DNA repair in Bloom’s syndrome fibroblasts after UV irradiation or treatment with mitomycin C. Mutat Res 80: 213–219

    PubMed  CAS  Google Scholar 

  • Ito I, Yoshimoto M, Iwase T, Watanabe S, Katagiri T, Harada Y, Kasumi F, Yasuda S, Mitomi T, Emi M et al (1995) Association of genetic alterations on chromosome 17 and loss of hormone receptors in breast cancer. Br J Cancer 71: 438–441

    PubMed  CAS  Google Scholar 

  • Jaspers NG, Gatti RA, Baan C, Linssen PC, Bootsma D (1988) Genetic complementation of analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients. Cytogenet Cell Genet 49: 66–73

    Google Scholar 

  • Jeeves WP, Rainbow AJ (1986) An aberration in gamma-ray-enhanced reactivation of irradiated adenovirus in ataxia telangiectasia fibroblasts. Carcinogenesis 7: 381–387

    PubMed  CAS  Google Scholar 

  • Jimenez G, Yucel J, Rowley R, Subramani S (1992) The rad3 + gene of Schizosaccharomyces pombe is involved in multiple checkpoint functions and in DNA repair. Proc Natl Acad Sci USA 89: 4952–4956

    PubMed  CAS  Google Scholar 

  • Joenje H, Gille JJ (1989) Oxygen metabolism and chromosomal breakage in Fanconi anemia In: Schroeder-Kurth TM, Auerbach AD, Obe G (eds) Fanconi anemia Springer, Berlin Heidelberg New York, pp 174–182

    Google Scholar 

  • Joenje H, Frants RR, Arwert F, de Bruin GJ, Kostense PJ, van de Kamp JJ, de Koning J, Eriksson AW (1979) Erythrocyte superoxide dismutase deficiency in Fanconi’s anaemia established by two independent methods of assay. Scand J Clin Lab Invest 39: 759–764

    PubMed  CAS  Google Scholar 

  • Joenje H, Arwert F, Eriksson AW, de Koning H, Oostra AB (1981) Oxygen-dependence of chromosomal aberrations in Fanconi’s anaemia. Nature 290: 142–143

    PubMed  CAS  Google Scholar 

  • Joenje H, Lo ten Foe JR, Oostra AB, van Berkel CG, Rooimans MA, Schroeder-Kurth T, Wegner RD, Gille JJ, Buchwald M, Arwert F (1995) Classification of Fanconi anemia patients by complementation analysis: evidence for a fifth genetic subtype. Blood 86: 2156–2160

    PubMed  CAS  Google Scholar 

  • Johansson E, Niemi KM, Siimes M, Pyrhonen S (1982) Fanconi’s anemia. Tumor-like warts, hyperpigmentation associated with deranged keratinocytes, and depressed cell-mediated immunity. Arch Dermatol 118: 249–252

    PubMed  CAS  Google Scholar 

  • Jones LA, Scott D, Cowan R, Roberts SA (1995) Abnormal radiosensitivity of lymphocytes from breast cancer patients with excessive normal tissue damage after radiotherapy: chromosome aberrations after low dose-rate irradiation. Int J Radiat Biol 67: 519–528

    PubMed  CAS  Google Scholar 

  • Kaiser TN, Lojewski A, Dougherty C, Juergens L, Sahar E, Latt SA (1982) Flow cytometric characterization of the response of Fanconi’s anemia cells to mitomycin C treatment. Cytometry 2: 291–297

    PubMed  CAS  Google Scholar 

  • Kapp LN, Painter RB (1981) DNA fork displacement rates in human cells. Biochim Biophys Acta 656: 36–39

    PubMed  CAS  Google Scholar 

  • Karlsen F, Rabbitts PH, Sundresan V, Hagmar B (1994) PCR-RFLP studies on chromosome 3p in formaldehyde-fixed, paraffin-embedded cervical cancer tissues. Int J Cancer 58: 787–792

    PubMed  CAS  Google Scholar 

  • Kastan MB (1995) Ataxia-telangiectasia — broad implications for a rare disorder. N Engl J Med 333: 662–663

    PubMed  CAS  Google Scholar 

  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597

    PubMed  CAS  Google Scholar 

  • Kaye J, Smith CA, Hanawalt PC (1980) DNA repair in human cells containing photoadducts of 8-methoxypsoralen or angelicin. Cancer Res 40: 696–702

    PubMed  CAS  Google Scholar 

  • Keegan KS, Holtzman DA, Plug AW, Brainerd EE, Christenson ER, Bentley EM, Meyn MS, Moss SB, Carr AM, Ashley T, Hoetistra M (1996) The ATR and ATM protein kinases associate with different sites along meiotically pairing chromosomes. Genes Develop (in press)

    Google Scholar 

  • Keldysh PL, Dragarli TA, Fleischman EW, Konstantinova LN, Perevoschikov AG, Pierotti MA, Porta GD, Kopnin PB (1993) 11q deletions in human colorectal carcinomas: cytogenetics and restriction fragment length polymorphism analysis. Genes Chromosome Cancer 6: 45–50

    CAS  Google Scholar 

  • Kerlikowske K, Grady D, Barclay J, Sickles EA, Eaton E, Ernster V (1993) Positive predictive value of screening mammography by age and family history of breast cancer. JAMA 270: 2444–2450

    PubMed  CAS  Google Scholar 

  • Khanna KK, Lavin MF (1993) Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 8: 3307–3312

    PubMed  CAS  Google Scholar 

  • Kidson C, Chen P, Imray P (1982) Ataxia-telangiectasia heterozygotes: dominant expression of ionizing radiation sensitive mutants. In: Bridges BA, Harnden DG (eds) Ataxia-telangiectasia: a cellular and molecular link between cancer neuropathology, and immune deficiency. Wiley, Chichester, pp 363–372

    Google Scholar 

  • Kim S, Vollberg TM, Ro JY, Kim M, Sirover MA (1986) 06-methylguanine methyltransferase increases before S phase in normal human cells but does not increase in hypermutable Bloom’s syndrome cells. Mutat Res 173: 141–145

    PubMed  CAS  Google Scholar 

  • Kinsella TJ, Mitchell JB, McPherson S, Russo A, Tietze F (1982) In vitro X-ray sensitivity in ataxia telangiectasia homozygote and heterozygote skin fibroblasts under oxic and hypoxic conditions. Cancer Res 42: 3950–3056

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Tycko B, Soreng AL, Sklar J (1991) Transrearrangements between antigen receptor genes in normal human lymphoid tissues and in ataxia telangiectasia. J Immunol 147: 3201–3209

    PubMed  CAS  Google Scholar 

  • Kohchi C, Noguchi K, Tanabe Y, Mizuno D-I, Soma G-I (1994) Constitutive expression of TNF-α and TNF-β genes in mouse embryo: roles of cytokines as regulator and effector of development. Int J Biochem 26: 111–119

    PubMed  CAS  Google Scholar 

  • Kohn PH, Kraemer KH, Buchanan JK (1982a) Influence of ataxia telangiectasia gene dosage on bleomycin-induced chromosome breakage and inhibition of replication in human lymphoblastoid cell lines Exp Cell Res 137: 387–395

    PubMed  CAS  Google Scholar 

  • Kohn PH, Whang-Peng J, Levis WR (1982b) Chromosomal instability in ataxia telangiectasia. Cancer Genet Cytogenet 6: 289–302

    PubMed  CAS  Google Scholar 

  • Kohno T, Takayama H, Hamaguchi M, Takano H, Yamaguchi N, Tsuda H, Hirohashi S, Vissing H, Shimizu M, Oshimura M et al (1993) Deletion mapping of chromosome 3p in human uterine cervical cancer. Oncogene 8: 1825–1832

    PubMed  CAS  Google Scholar 

  • Kojis TL, Schreck RR, Gatti RA, Sparkes RS (1989) Tissue specificity of chromosomal rearrangements in ataxia-telangiectasia. Hum Genet 83: 347–352

    PubMed  CAS  Google Scholar 

  • Kojis TL, Gatti RA, Sparkes RS (1991) The cytogenetics of ataxia telangiectasia. Cancer Genet Cytogenet 56: 143–156

    PubMed  CAS  Google Scholar 

  • Komatsu K, Okumura Y, Kodama S, Yoshida M, Miller RC (1989) Lack of correlation between rediosensitivity and inhibition of DNA synthesis in hybrids A-T x HeLa. Int J Radiat Biol 56: 863–867

    PubMed  CAS  Google Scholar 

  • Konstantinova LN, Fleischman EW, Knisch VI, Perevoschikov AG, Kipnon BP (1991) Karyotype peculiarities of human colorectal adenocarcinomas. Hum Genet 86: 491–496

    PubMed  CAS  Google Scholar 

  • Koreth J, Bethwaite PB, McGee JO (1995) mutation at chromosome 11q23 in human non-familial breast cancer: a microdissection microsatellite analysis. J Pathol 176: 11–18

    PubMed  CAS  Google Scholar 

  • Korkina LG, Samochatova EV, Maschan AA, Suslova TB, Cheremisina ZP, Afanas’ev IB (1992) Release of active oxygen radicals by leukocytes of Fanconi anemia patients. J. Leukoc Biol 52: 357–362

    PubMed  CAS  Google Scholar 

  • Krepinksy AB, Heddle JA, German J (1979) Sensitivity of Bloom’s syndrome lymphocytes to ethyl methanesulfonate. Hum Genet 50: 151–156

    Google Scholar 

  • Krepinsky AB, Rainbow AJ, Heddle JA (1980) Studies on the ultraviolet light sensitivity of Bloom’s syndrome fibroblasts. Mutat Res 69: 357–368

    PubMed  CAS  Google Scholar 

  • Krepinsky AB, Heddle JA, German J (1989) Sensitivity of Bloom’s syndrome lymphocytes to ethyl methanesulfonate. Hum Genet 50: 151–156

    Google Scholar 

  • Krontiris TG, Devlin B, Karp DD, Robert NJ, Risch N (1993) An association between the risk of cancer and mutations in the HRAS1 minisatellite locus. N Engl J Med 329: 517–523

    PubMed  CAS  Google Scholar 

  • Kubbies M, Schindler D, Hoehm H, Schinzel A, Rabinovitch PS (1985) Endogenous blockage and delay of the chromosome cycle despite normal recruitment and growth phase explain poor proliferation and frequent endomitosis in Fanconi’s anemia cells. Am J Hum Genet 37: 1022–1030

    PubMed  CAS  Google Scholar 

  • Kuhn EM (1980) Effects of X-irradiation in G1 and G2 on Bloom’s syndrome and normal chromosomes. Hum Genet 54: 335–341

    PubMed  CAS  Google Scholar 

  • Kuhn EM, Therman E (1979) No increased chromosome breakage in three Bloom’s syndrome heterozygotes. J Med Genet 16: 219–222

    PubMed  CAS  Google Scholar 

  • Kuhn EM, Therman E (1986) Cytogenetics of Bloom’s syndrome. Cancer Genet Cytogenet 22: 1–18

    PubMed  CAS  Google Scholar 

  • Kuller LH, Modan B (1992) Risk of breast cancer in ataxia-telangiectasia. N Engl J Med 326: 1357

    PubMed  CAS  Google Scholar 

  • Kurchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T, Oettinger MA, Brown JM (1995) DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267: 1178–1183

    Google Scholar 

  • Kurihara T, Inoue M, Tatsumi K (1987a) Hypersensitivity of Bloom’s syndrome fibroblasts to N-ethyl-N-nitrosourea. Mutat Res 184: 147–151

    PubMed  CAS  Google Scholar 

  • Kurihara T, Tatsumi K, Takahashi H, Inoue M (1987b) Sister-Chromatid exchanges induced by ultraviolet light in Bloom’s syndrome fibroblasts. Mutat Res 183: 197–202

    PubMed  CAS  Google Scholar 

  • Kusunoki Y, Hayashi T, Hirai Y, Kushiro J, Tatsumi K, Kurihara T, Zghal M, Kamoun MR, Takebe H, Jeffreys A, et al. (1994) Increased rate of spontaneous mitotic recombination in T lymphocytes from a Bloom’s syndrome patient using a flow-cytometric assay at HLA-A locus. Jpn J Cancer Res 85: 610–618

    PubMed  CAS  Google Scholar 

  • Kyoizumi S, Nakamura N, Takebe H, Tatsumi K, German J, Akiyama M (1989) frequency of variant erythrocytes at the glycophorin-A locus in two Bloom’s syndrome patients. Mutat Res 214: 215–222

    PubMed  CAS  Google Scholar 

  • Lambert MW, Tsongalis GJ, Lambert WC, Hang B, Parrish DD (1992) Defective DNA endonuclease activities in Fanconi’s anemia cells, complementation groups A and B. Mutat Res 273: 57–71

    PubMed  CAS  Google Scholar 

  • Land CE (1992) Risk of breast cancer in ataxia-telangiectasia. N Engl J Med 326: 1359–1361

    PubMed  CAS  Google Scholar 

  • Landau JW, Sasaki MS, Newcomer VD, Norman A (1966) Bloom’s syndrome: the syndrome of telangiectatic erythema and growth retardation. Arch Dermatol 94: 687–694

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1987) Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236: 1567–1570

    PubMed  CAS  Google Scholar 

  • Lane DP (1992) Cancer: p53, guardian of the genome. Nature 358: 15–16

    PubMed  CAS  Google Scholar 

  • Langlois RG, Bigbee WL, Jensen RH, German J (1989) Evidence for increased in vivo mutation and somatic recombination in Bloom’s syndrome. Proc Natl Acad Sci USA 86: 670–674

    PubMed  CAS  Google Scholar 

  • Laquerbe A, Moustacchi E, Fuscoe JC, Papadopoulo D (1995) The molecular mechanism underlying formation of deletions in Fanconi anemia cells may involve a site-specific recombination. Proc Natl Acad Sci USA 92: 831–835

    PubMed  CAS  Google Scholar 

  • Larrick JW, Wright SC (1990) Cytotoxic mechanism of tumor necrosis factor-α. FASEB J 4: 3215–3223

    PubMed  CAS  Google Scholar 

  • Latt SA, Stetten G, Juergens LA, Buchanan GR, Gerald PS (1975) Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi’s anemia. Proc Natl Acad Sci USA 72: 4066–4070

    PubMed  CAS  Google Scholar 

  • Lavin MF, Le Poidevin P, Bates P (1992) Enhanced levels of radiation-induced G2 phase delay in ataxia telangiectasia heterozygotes. Cancer Genet Cytogenet 60: 183–187

    PubMed  CAS  Google Scholar 

  • Lavin MF, Bennett I, Ramsay J, Gardiner RA, Seymour GJ, Farrell A, Walsh M (1994) Identification of a potentially radiosensitive subgroup among patients with breast cancer. J Natl Cancer Inst 86: 1627–1634

    PubMed  CAS  Google Scholar 

  • Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colon cancer. Cell 75: 1214–1225

    Google Scholar 

  • Lees-Miller SP, Godbout R, Chan DW, Weinfeld M, Day III RS, Baron G, Allalunis-Tuner J (1995) Absence of p350 subunit of DNA-activated protein kinase from a radiosensitive human cell line. Science 267: 1183–1185

    PubMed  CAS  Google Scholar 

  • Lehman AR, Stevens S (1977) The production and repair of double strand breaks in cells from normal humans and from patients with ataxia telangiectasia. Biochim Biophys Acta 474: 49–60

    PubMed  CAS  Google Scholar 

  • Levanat S, Gorlin RJ, Fallet S, Johnson DR, Fantasia JE, Bale AE (1996) A two-hit model for developmental defects in Gorlin syndrome. Nature Genet 12: 85–87

    PubMed  CAS  Google Scholar 

  • Li FP, Hecht F, Kaiser-McCaw B, Baranko PV, Potter NU (1981) Ataxia-pancytopenia: syndrome of cerebellar ataxia, hypoplastic anemia, monosomy 7, and acute myelogenous leukemia. Can Genet cytogenet 4: 189–196

    CAS  Google Scholar 

  • Lipkowitz S, Stern MH, Kirsch IR (1990) Hybrid T cell receptor genes formed by interlocus recombination in normal and ataxia-telangiectasis lymphocytes. J Exp Med 172: 409–418

    PubMed  CAS  Google Scholar 

  • Lipkowitz S, Garry VF, Kirsch IR (1992) Interlocus V-J recombination measures genomic instability in agriculture workers at risk for lymphoid malignancies. Proc Natl Acad Sci USA 89: 5301–5305

    PubMed  CAS  Google Scholar 

  • Little JB, Nagasawa H (1985) Effect of confluent holding on potentially lethal damage repair, cell cycle progression, and chromosomal aberrations in human normal and ataxia-telangiectasia fibroblasts. Radiat Res 101: 81–93

    PubMed  CAS  Google Scholar 

  • Little JB, Nove J, Strong LC, Nichols WW (1988) Survival of human diploid skin fibroblasts from normal individuals. Int J Radiat Biol 54: 899–910

    PubMed  CAS  Google Scholar 

  • Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51: 3075–3079

    PubMed  CAS  Google Scholar 

  • Loeffler JS, Harris JR, Dahlberg WK, Little JB (1990) In vitro radiosensitivity of human diploid fibroblasts derived from women with unusually sensitive clinical responses to definitive radiation therapy for breast cancer. Radiat Res 121: 227–231

    PubMed  CAS  Google Scholar 

  • Lonn U, Lonn S, Nylen U, Winblad G, German J (1990) An abnormal profile of DNA replication intermediates in Bloom’s syndrome. Cancer Res 50: 3141–3145

    PubMed  CAS  Google Scholar 

  • Louis-Bar D (1941) Sur un syndrome progressif comprenant des télangiectasies capillaires cutanées et conjonctivales symétriques, à disposition naevode et de troubles cérébelleux. Confin Neurol (Basel) 4: 32–42

    Google Scholar 

  • Lowe SW, Ruley HE, Jacks T, Houseman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967

    PubMed  CAS  Google Scholar 

  • Lu X, Lane DP (1993) Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75: 765–778

    PubMed  CAS  Google Scholar 

  • Lu YY, Jhanwar SC, Cheng JQ, Testa JR (1994) Deletion mapping of the short arm of chromosome 3 in human malignant mesothelioma. Genes Chromosomes Cancer 9: 76–80

    PubMed  CAS  Google Scholar 

  • Lynch HT, Lynch JF (1994) 25 years of HNPCC. Anticancer Res 14: 1617–1624

    PubMed  CAS  Google Scholar 

  • Maciejewski LP, Selleri C, Sato T, Anderson S, NS Y (1995) Increased expression of Fas antigen on bone marrow CD34+ cells of patients with aplastic anaemia. Br J Haematol 91: 245–252

    PubMed  CAS  Google Scholar 

  • Malkin D (1993) p53 and the Li-Fraumeni syndrome. Cancer Genet Cytogenet 66: 83–92

    PubMed  CAS  Google Scholar 

  • Marshall E (1996) Klausner’s unconventional field station in Seattle. Science 271: 1224–1225

    PubMed  CAS  Google Scholar 

  • Marx MP, Smith S (1989) Significance of cellular sensitivity in a group of parents of Fanconi anemia patients. In: Schroeder-Kurth TM, Auerbach AD, Obe G (eds) Fanconi anemia. Springer, Berlin Heidelberg New York, pp 137–144

    Google Scholar 

  • Marx MP, Smith S, Heyns AD, van Tonder IZ (1983) Fanconi’s anemia: a cytogenetic study on lymphocyte and bone marrow cultures utilizing 1,2:3,4-diepoxybutane. Cancer Genet Cytogenet 9: 51–59

    PubMed  CAS  Google Scholar 

  • Matthews N, Neale M, Jackson S (1987) Tumor cell killing by TNF inhibited by anaerobic conditions, free radical scavengers and inhibitors of arachidonate metabolism. Immunology 62: 153–155

    PubMed  CAS  Google Scholar 

  • Mavelli I, Ciriolo MR, Rotilio G, De Sole P, Castorino M, Stabile A (1982) Superoxide dismutase, glutathione peroxidase and catalase in oxidative hemolysis. A study of Fanconi’s anemia erythrocytes. Biochem Biophys Res Commun 106: 286–290

    PubMed  CAS  Google Scholar 

  • McDaniel LD, Schultz RA (1992) Elevated sister chromatid exchange phenotype of Bloom syndrome cells in complemented by human chromosome 15. Proc Natl Acad Sci USA 89: 7968–7972

    PubMed  CAS  Google Scholar 

  • Meyn MS (1993) High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science 260: 1327–1330

    PubMed  CAS  Google Scholar 

  • Meyn MS (1995) Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 55: 5991–6001

    PubMed  CAS  Google Scholar 

  • Meyn MS, Bainton J, Herzing LBK (1993) Increased rates of spontaneous intrachromosomal mitotic recombination in Fanconi anemia fibroblast lines. Exp Hematol 21: 717

    Google Scholar 

  • Meyn MS, Strasfeld L, Allen C (1994) Testing the role of p53 in the expression of genetic instability and apoptosis in ataxia-telangiectasia. Int J Radiat Biol 66: S141–149

    PubMed  CAS  Google Scholar 

  • Meyn MS, Strasfeld L, Allen C (submitted) p53-mediated apoptosis causes radiosensitivity in ataxia-telangiectasia

    Google Scholar 

  • Miller AB, Howe GR, Sherman GJ, Lindsay JP, Yaffe MJ, Dinner PJ, Risch HA, Preston DL (1989) Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis. N Eng J Med 321: 1285–1289

    CAS  Google Scholar 

  • Mizutani Y, Bonavida B, Koishihara Y, Akamatsu K, Ohsugi Y, Yoshida O (1995) Sensitization of human renal cell carcinoma cells to cis-diamminedichloroplatinum(II) by anti-interleukin 6 monoclonal antibody or anti-interleukin 6 receptor monoclonal antibody. Cancer Res 55: 590–596

    PubMed  CAS  Google Scholar 

  • Monnat RJ Jr (1992) Werner syndrome: molecular genetics and mechanistic hypotheses. Exp Gerontol 27: 447–453

    PubMed  CAS  Google Scholar 

  • Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith K, Kaplan G (1993) Thalidomide exerts its inhibitory action on tumor necrosis factor a by enhancing mRNA degradation. J Exp Med 199: 1675–1680

    Google Scholar 

  • Morgan JL, Holcomb TM, Morrissey RW (1968) Radiation reaction in ataxia telangiectasia. Am J Dis Child 116: 557–558

    PubMed  CAS  Google Scholar 

  • Mori S, Kondo N, Motoyoshi F, Yamaguchi S, Kaneko H, Orii T (1990) Diabetes mellitus in a young man with Bloom’s syndrome. Clin Genet 38: 387–390

    PubMed  CAS  Google Scholar 

  • Mori T, Yanagisawa A, Kato Y, Miura K, Nishihira T, Mori S, Nakamura Y (1994) Accumulation of genetic alterations during esophageal carcinogenesis. Hum Mol Genet 3: 1969–1971

    PubMed  CAS  Google Scholar 

  • Morrell D, Cromartie E, Swift M (1986) Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J Natl Cancer Inst 77: 89–92

    PubMed  CAS  Google Scholar 

  • Morris DJ, Reis A (1994) A YAC contig spanning the nevoid basal cell carcinoma syndrome, Fanconi anaemia group C, and xeroderma pigementosum group A loci on chromosome 9q. Genomics 23: 23–29

    PubMed  CAS  Google Scholar 

  • Muleris M, Salmon RJ, Dutrillaux B (1990) Cytogenetics of colorectal adenocarcinomas. Cytogenet Cell Genet 46: 143–156

    CAS  Google Scholar 

  • Mullokandov MR, Kholodilov NG, Atkin NB, Burk RD, Johnson AB, Klinger HP (1996) genomic alterations in cervical carcinoma: losses of chromosome heterozygosity and human papilloma virus tumor status. Cancer Res 56: 197–205

    PubMed  CAS  Google Scholar 

  • Muriel WJ, Lamb JR, Lehmann AR (1991) UV mutation spectra in cell lines from patients with Cockayne’s syndrome and ataxia telangiectasia, using the shuttle vector pZ189. Mutat Res 254: 119–123

    PubMed  CAS  Google Scholar 

  • Murray AW (1992) Creative blocks: cell-cycle checkpoints and feedback controls. Nature 359: 599–604

    PubMed  CAS  Google Scholar 

  • Nagafuji K, Shibuya T, Harada M, Mizuno S, Takenaka K, Miyamoto T, Okamura T, Gondo H, Niho Y (1995) Functional expression of Fas antigen (CD95) on hematopoietic progenitor cells. Blood 86: 883–889

    PubMed  CAS  Google Scholar 

  • Nagasawa H, Little JB (1983) Suppression of cytotoxic effect of mitomycin-C by superoxide dismutase in Fanconi’s anemia and dyskeratosis congenita fibroblasts. Carcinogenesis 4: 795–799

    PubMed  CAS  Google Scholar 

  • Nagasawa H, Latt SA, Lalande ME, Little JB (1985) Effects of X-irradiation on cell-cycle progression, induction of chromosomal aberrations and cell killing in ataxia telangiectasia (AT) fibroblasts. Mutat Res 148: 71–82

    PubMed  CAS  Google Scholar 

  • Nagasawa H, Kraemer KH, Shiloh Y, Little JB (1987) Detection of ataxia telangiectasia heterozygous cell lines by postirradiation cumulative labelling index: measurements with coded samples. Cancer Res 47: 398–402

    PubMed  CAS  Google Scholar 

  • Natarajan AT, Meijers M, van Zeeland AA, Simons JW (1982) Attempts to detect ataxia telangiectasia (AT) heterozygotes by cytogenetical techniques. Cytogenet Cell Genet 33: 145–151

    PubMed  CAS  Google Scholar 

  • National Research Council (1990) Health effects of exposure to low levels of ionizing radiation. In: “BEIR V”. National Academy Press, Washington DC

    Google Scholar 

  • Negrini M, Rasio D, Hampton GM, Sabbiloni S, Rattan S, Carter SL, Rosenberg AL, Schwartz GF, Shiloh Y, Cavenee WK, Croce CM (1995) Definition and refinement of chromosome 11 regions of loss of heterozygosity in breast cancer: identification of a new region at 11q23.3. Cancer Res 55: 3003–3007

    PubMed  CAS  Google Scholar 

  • Nelson WG, Kastan MB (1994) DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 14: 1815–1823

    PubMed  CAS  Google Scholar 

  • Nicolaides NC, Papadopoulos N, Lie B, Wei Y-F, Carter KC, Ruben SM et al (1994) Mutations of two homologous in hereditary non-polyposis colon cancer. Nature 371: 75–80

    PubMed  CAS  Google Scholar 

  • Nicotera TM, Notaro J, Notaro S, Schumer J, Sandberg AA (1989) Elevated superoxide dismutase in Bloom’s syndrome: a genetic condition of oxidative stress. Cancer Res 49: 5239–5243

    PubMed  CAS  Google Scholar 

  • Nordenson I (1977) Effect of superoxide dismutase and catalase on spontaneously occurring chromosome breaks in patients with Fanconi’s anemia. Hereditas 86: 147–150

    PubMed  CAS  Google Scholar 

  • Norman A, Withers HR (1993) Mammography screening for A-T heterozygotes. In: Gatti RA, Painter RB (eds) Ataxia-telangiectasia. Springer, Berlin Heidelberg New York, pp 137–140

    Google Scholar 

  • Norman A, Kagan AR, Chan SL (1988) The importance of genetics for the optimization of radiation therapy. Am J Clin Oncol 11: 84–88

    PubMed  CAS  Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194: 23–28

    PubMed  CAS  Google Scholar 

  • Ockey CH, Saffhill R (1986) Delayed DNA maturation, a possible cause of the elevated sister-chromatid exchange in Bloom’s syndrome. Carcinogenesis 7: 53–57

    PubMed  CAS  Google Scholar 

  • Ogasawara S, Maesawa C, Tamura G, Satodate R (1995) Frequent microsatellite alterations on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res 55: 891–894

    PubMed  CAS  Google Scholar 

  • Okahata S, Kobayashi Y, Usui T (1980) Erythrocyte superoxide dismutase activity in Fanconi’s anaemia. Clin Sci 58: 173–175

    PubMed  CAS  Google Scholar 

  • Oto S, Miyamoto S, Kudoh F, Horie H, Kinugawa N, Okimoto Y (1992) Treatment for B-cell-type lymphoma in a girl associated with Bloom’s syndrome. Clin Genet 41: 46–50

    PubMed  CAS  Google Scholar 

  • Oxford JM, Harnden DG, Parrington JM, Delhanty JD (1975) Specific chromosome aberrations in ataxia telangiectasia. J Med Genet 12: 251–262

    PubMed  CAS  Google Scholar 

  • Painter RB, Young BR (1980) Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci USA 77: 7215–7217

    Google Scholar 

  • Pandita TK, Hittelman WN (1992a) The contribution of DNA and chromosome repair deficiencies to the radiosensitivity of ataxia-telangiectasia. Radiat Res 131: 214–223

    PubMed  CAS  Google Scholar 

  • Pandita TK, Hittelman WN (1992b) Initial chromosome damage but not DNA damage is greater in ataxia telangiectasia cells. Radiat Res 130: 94–103

    PubMed  CAS  Google Scholar 

  • Pandita TK, Hittelman WN (1994) Increased levels of chromosome damage and heterogeneous chromosome repair in ataxia telangiectasia heterozygote cells. Mutat Res 310: 1–13

    PubMed  CAS  Google Scholar 

  • Pandita TK, Hittelman WN (1995) Evidence of a chromatin basis for increased mutagen sensitivity associated with multiple primary malignancies of the head and neck. Int J Cancer 61: 738–743

    PubMed  CAS  Google Scholar 

  • Pandita TK, Pathak S, Geard CR (1995) Chromosome end associations, telomeres and telomerase activity in ataxia telangiectasia cells. Cytogenet Cell Genet 71: 86–93

    PubMed  CAS  Google Scholar 

  • Papadopoulo D, Guillouf C, Mohrenweiser H, Moustacchi E (1990a) Hypomutability in Fanconi anaemia cells is associated with increased deletion frequency at the HPRT locus. Proc Natl Acad Sci USA 87: 8383–8387

    PubMed  CAS  Google Scholar 

  • Papadopoulo D, Porfirio B, Moustacchi E (1990b) Mutagenic response of Fanconi’s anemia cells from a defined complementation group after treatment with photoactivated bifunctional psoralens. Cancer Res 50: 3289–3294

    PubMed  CAS  Google Scholar 

  • Papadopoulos N, Nicolaides N, Wei Y-F, Ruben SM, Carter KC, Rosen CA et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263: 1625–1629

    PubMed  CAS  Google Scholar 

  • Parshad R, Sanford KK, Jones GM (1983) Chromatid damage after G2 phase X-irradiation of cells from cancer-prone individuals implicates deficiency in DNA repair. Proc Natl Acad Sci USA 88: 7615–7619

    Google Scholar 

  • Parshad R, Sanford KK, Jones GM, Tarone RE (1985) G2 chromosomal radiosensitivity of ataxia-telangiectasia heterozygotes. Cancer Genet Cytogenet 14: 163–168

    PubMed  CAS  Google Scholar 

  • Partridge M, Kiguwa S, Langdon JD (1994) Frequent deletion of chromosome 3p in oral squamous cell carcinoma. Eur J Cancer B Oral Oncol 30B: 248–251

    PubMed  CAS  Google Scholar 

  • Passarge E (1991) Bloom’s syndrome: the German experience. Ann Genet 34: 179–197

    PubMed  CAS  Google Scholar 

  • Patchen ML, Mac Vittie TJ, Williams JL, Schwartz GN, Souza LM (1991) Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induced hematopoietic depression. Blood 77: 472–480

    PubMed  CAS  Google Scholar 

  • Paterson MC, Anderson AK, Smith BP, Smith PJ (1979) Enhanced radiosensitivity of cultured fibroblasts from ataxia telangiectasia heterozygotes manifested by defective colony-forming ability and reduced DNA repair replication after hypoxic γ-irradiation. Cancer Res 39: 3725–3734

    PubMed  CAS  Google Scholar 

  • Paterson MC, Bech-Hansen NT, Smith PJ, Mulvihill JJ (1984) Radiogenic neoplasia, cellular radiosensitivity and faulty DNA repair. In: Boice J, Frauni JF (eds) Radiation carcinogenesis: epidemiology and biological significance. Raven, New York, pp 319–336

    Google Scholar 

  • Paterson MC, MacFarlane SJ, Gentner NE, Smith BP (1985) Cellular hypersensitivity to chronic γ-radiation in cultured fibroblasts from ataxia-telangiectasia heterozygotes. In: Gatti RA, Swift M (eds) Ataxia-telangiectasia: genetics, neuropathology, and immunology of a degenerative disease of childhood. Liss, New York, pp 73–87

    Google Scholar 

  • Pavlakis SG, Frissora CL, Giampietro PF, Davis JG, Gould RJ, Adler-Brecher B, Auerbach AD (1992) Fanconi anemia: a model for genetic causes of abnormal brain development. Dev Med Child Neurol 34: 1081–1084

    PubMed  CAS  Google Scholar 

  • Pejovic T (1995) Genetic changes in ovarian cancer. Ann Med 27: 73–78

    PubMed  CAS  Google Scholar 

  • Perdahl EB, Naprstek BL, Wallace WC, Lipton JM (1994) Erythroid failure in Diamond-Blackfan anemia is characterized by apoptosis. Blood 83: 645–650

    PubMed  CAS  Google Scholar 

  • Perkins J, Timson J, Emery AE (1969) Clinical and chromosome studies in Fanconi’s aplastic anaemia. J Med Genet 6: 28–33

    PubMed  CAS  Google Scholar 

  • Peterson RDA, Good RA (1968) Ataxia-telangiectasia. In: Bergsma D, Good RA (eds) Birth defects — immunologic defiency disease in man. National Foundation, March of Dimes, New York, pp 370–377

    Google Scholar 

  • Peterson RDA, Funkhouser JD, Tuck-Muller CM, Gatti RA (1992) Cancer susceptibility in ataxia-telangiectasia. Leukemia 6 [Suppl 1]: 8–13

    PubMed  Google Scholar 

  • Petridou M, Barrett AJ (1990) Physical and laboratory characteristics of heterozygote carriers of the Fanconi aplasia gene. Acta Paediatr Scand 79: 1069–1074

    PubMed  CAS  Google Scholar 

  • Pfeiffer RA (1970) Chromosomal abnormalities in ataxia-telangiectasia (Louis Bar’s syndrome). Humangenetik 8: 302–306

    PubMed  CAS  Google Scholar 

  • Phipps J, Nasim A, Miller DR (1985) Recovery, repair and mutagenesis in Schizosaccharomyces pombe. Adv Genet 23: 1–72

    PubMed  CAS  Google Scholar 

  • Pincheira J, Bravo M, Lopez-Saez JF (1988) Fanconi’s anemia lymphocytes: effect of caffeine, adenosine and niacinamide during G2 prophase. Mutat Res 199: 159–165

    PubMed  CAS  Google Scholar 

  • Pippard EC, Hall AJ, Barker DJ, Bridges BA (1988) Cancer in homozygotes and heterozygotes of ataxia-telangiectasia and xeroderma pigmentosum in Britain. Cancer Res 48: 2929–2932

    PubMed  CAS  Google Scholar 

  • Poll EH, Abrahams PJ, Arwert F, Eriksson AW (1984) Host-cell reactivation of cis-diamminedichloroplatinum(II)-treated SV40 DNA in normal human, Fanconi anaemia and xeroderma pigmentosum fibroblasts. Mutat Res 132: 181–187

    PubMed  CAS  Google Scholar 

  • Poll EHA, Arwert F, Joenje H, Wanamarta AH (1985) Differential sensitivity of Fanconi anaemia lymphocyotes to the clastogenic action of cis-diamminedichloroplatinum (II) and trans-diamminedichloroplatinum (II). Hum Genet 71: 206–210

    PubMed  CAS  Google Scholar 

  • Poot M, Verkerk A, Koster JF, Jongkind JF (1986) De novo synthesis of glutathione in human fibroblasts during in vitro ageing and in some metabolic diseases as measured by a flow cytometric method. Biochim Biophys Acta 883: 580–584

    PubMed  CAS  Google Scholar 

  • Porfirio B, Dallapiccola B, Mokini V, Alimena G, Gandini E (1983) Failure of diepoxybutane to enhance sister chromatid exchange levels in Fanconi’s anemia patients and heterozygotes. Hum Genet 63: 117–120

    PubMed  CAS  Google Scholar 

  • Potter NU, Sarmousakis C, Li FP (1983) Cancer in relatives of patients with aplastic anemia. Cancer Genet Cytogenet 9: 61–69

    PubMed  CAS  Google Scholar 

  • Pritsos CA, Sartorelli AC (1986) Generation of reactive oxygen radicals through biactivation of mitomycin antibiotics. Cancer Res 46: 3528–3532

    PubMed  CAS  Google Scholar 

  • Pronk JC, Gibson RA, Savoia A, Wijker M, Morgan NV, Melchionda S, Ford D, Temtamy S, Ortega JJ, Jansen S et al (1995) Localisation of the Fanconi anaemia complementation group A gene to chromosome 16q24.3. Nature Genet 11: 338–340

    PubMed  CAS  Google Scholar 

  • Rabbitts TH (1991) Translocations, master genes and differences between the origin of acute and chronic leukaemias. Cell 67: 641–644

    PubMed  CAS  Google Scholar 

  • Ramsay J, Birrell G (1995) Normal tissue radiosensitivity in breast cancer patients. Int J Radiat Oncol Biol Phys 31: 339–344

    PubMed  CAS  Google Scholar 

  • Randal J (1995a) Are mammograms a good idea for AT gene carriers? J Natl Cancer Inst 87: 1351

    Google Scholar 

  • Randal J (1995b) ATM gene discovery may quiet carrier cancer risk debate. J Natl Cancer Inst 87: 1350–1351

    PubMed  CAS  Google Scholar 

  • Rasio T, Negrini M, Manenti G, Dragani TA, Croce CM (1995) Loss of heterozygosity at chromosome 11q in lung adenocarcinoma: identification of three independent regions. Cancer Res 55: 3988–3991

    PubMed  CAS  Google Scholar 

  • Reed WB, Epstein WL, Boder E, Sedgwick R (1966) Cutaneous manifestations of ataxia-telangiectasia. JAMA 195: 746–753

    PubMed  CAS  Google Scholar 

  • Rennert G (1991) The value of mammography in different ethnic groups in Israel — analysis of mortality reduction and costs using CAN*Trol. Cancer Detect Prevent 15: 477–481

    PubMed  CAS  Google Scholar 

  • Rey JP, Scott R, Muller H (1994) Apoptosis is not involved in the hypersensitivity of Fanconi anemia cells to mitomycin C. Cancer Genet Cytogenet 75: 67–71

    PubMed  CAS  Google Scholar 

  • Riley E, Caldwell R, Swift M (1979) Comparison of clinical features in Fanconi anemia probands and their subsequently diagnosed siblings. Am J Hum Genet 31: 82A

    Google Scholar 

  • Rosendorff J, Bernstein R (1988) Fanconi’s anemia — chromosome breakage studies in homozygotes and hetrozygotes. Cancer Genet Cytogenet 33: 175–183

    PubMed  CAS  Google Scholar 

  • Rosendorff J, Bernstein R, Macdougall L, Jenkins T (1987) Fanconi anemia: another disease of unusually high prevalence in the Afrikaans population of South Africa. Am J Med Genet 27: 793–797

    PubMed  CAS  Google Scholar 

  • Rosin MP, German J (1985) Evidence for chromosome instability in vivo in Bloom syndrome: increased numbers of micronuclei in exfoliated cells. Hum Genet 71: 187–191

    PubMed  CAS  Google Scholar 

  • Rosin MP, Ochs HD, Gatti RA, Boder E (1989) Heterogeneity of chromosomal breakage levels in epithelial tissue of ataxia-telangiectasia homozygotes and heterozygotes. Hum Genet 83: 133–138

    PubMed  CAS  Google Scholar 

  • Rosselli F, Sanceau J, Wietzerbin J, Moustacchi E (1992) Abnormal lymphokine production: a novel feature of the genetic disease Fanconi anemia. I. Involvement of interleukin-6. Hum Genet 89: 42–48

    PubMed  CAS  Google Scholar 

  • Rosselli F, Sanceau J, Gluckman E, Wietzerbin J, Moustacchi E (1994) Abnormal lymphokine production: a novel feature of the genetic disease Fanconi anemia. II. In vitro and in vivo spontaneous overproduction of tumor necrosis factor alpha. Blood 83: 1216–1225

    PubMed  CAS  Google Scholar 

  • Rosselli F, Ridet A, Soussi T, Duchaud E, Alapetite C, Moustacchi E (1995) p53-dependent pathway of radio-induced apoptosis is altered in Fanconi anemia. Oncogene 10: 9–17

    PubMed  CAS  Google Scholar 

  • Rothstein JL, Johnson D, DeLoia JA, Skowronski J, Solter D, Knowles B (1992) Gene expression during preimplantation mouse development. Genes Dev 6: 1190–1201

    PubMed  CAS  Google Scholar 

  • Rousset S, Nocentini S, Revet B, Moustacchi E (1990) Molecular analysis by electron microscopy of the removal of psoralen-photoinduced DNA cross-links in normal and Fanconi’s anemia fibroblasts. Cancer Res 50: 2443–2448

    PubMed  CAS  Google Scholar 

  • Rowell S, Newman B, Boyd J, King M-C (1994) Inherited predisposition to breast and ovarian cancer. Am J Hum Genet 55: 861–865

    PubMed  CAS  Google Scholar 

  • Rudolph NS, Latt SA (1989) Flow cytometric analysis of X-ray sensitivity in ataxia telangiectasia. Mutat Res 211: 31–41

    PubMed  CAS  Google Scholar 

  • Rudolph NS, Nagasawa H, Little JB, Latt SA (1989) Identification of ataxia telangiectasia heterozygotes by flow cytometric analysis of X-ray damage. Mutat Res 211: 19–29

    PubMed  CAS  Google Scholar 

  • Russell KJ, Wiens LW, Demers GW, Galloway DA, Plon SE, Groudine M (1995) Abrogation of the G2 checkpoint results in differential radiosensitization of the G1 checkpoint-deficient and G1 checkpoint-competent cells, Cancer Res 55: 139–142

    Google Scholar 

  • Saadi AA, Palutke M, Kumar GK (1980) Evolution of chromosomal abnormalities in sequential cytogenetic studies of ataxia telangiectasia. Hum Genet 55: 23–29

    PubMed  Google Scholar 

  • Saito H, Hammond AT, Moses RE (1993) Hypersensitivity to oxygen is a uniform and secondary defect in Fanconi anemia cells. Mutat Res 294: 255–262

    PubMed  CAS  Google Scholar 

  • Sala-Trepat M, Boyse J, Richard P, Papadopoulo D, Moustacchi E (1993) Frequencies of HPRT-lymphocytes and glycophorin A variants erythrocytes in Fanconi anemia patients, their parents and control donors. Mutat Res 289: 115–126

    PubMed  CAS  Google Scholar 

  • Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ (1996) Regulation of RAD53 by the ATM-like Kinases MEC1 and TEL1 in yeast cell checkpoint pathways. Science 271: 357–360

    PubMed  CAS  Google Scholar 

  • Sankaranarayanan K, Charkraborty R (1995) Cancer predisposition, radiosensitivity and the risk of radiation-induced cancers, I. Background Radiat Res 143: 121–143

    CAS  Google Scholar 

  • Sasaki MS (1975) Is Fanconi’s anaemia defective in a process essential to the repair of DNA cross links? Nature 257: 501–503

    PubMed  CAS  Google Scholar 

  • Sasaki MS (1978) Fanconi’s anemia. A condition possibly associated with a defective DNA repair. In: Hanawalt PC, Friedberg EC, Fox CF (eds) DNA repair mechanisms. Academic, New York, pp 675–684

    Google Scholar 

  • Sasaki MS (1989) The Japan Society of Human Genetics award lecture. Cytogenetic aspects of cancer — predisposing genes. Jinrui Idengaku Zasshi 34: 1–16

    PubMed  CAS  Google Scholar 

  • Sasaki MS, Tonomura A (1973) A high susceptibility of Fanconi’s anemia to chromosome breakage by DNA cross-linking agents. Cancer Res 33: 1829–1836

    PubMed  CAS  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753

    PubMed  CAS  Google Scholar 

  • Savoia A, Centra M, Ianzano L, de Cillis GP, Zelante L, Buchwald M (1995) Characterization of the 5′ region of the Fanconi anaemia group C (FACC) gene. Hum Mol Genet 4: 1321–1326

    PubMed  CAS  Google Scholar 

  • Scarpa M, Rigo A, Momo F, Isacchi G, Novelli G, Dallapiccola B (1985) Increased rate of superoxide ion generation in Fanconi anemia erythrocytes. Biochem Biophys Res Commun 130: 127–132

    PubMed  CAS  Google Scholar 

  • Schalch DS, McFarlin DE, Barlow MH (1970) An unusual form of diabetes mellitus in ataxia telangiectasia. N Eng J Med 282: 1369–1402

    Google Scholar 

  • Schindler D, Hoehn H (1988) Fanconi anemia mutation causes cellular susceptibility to ambient oxygen. Am J Hum Genet 43: 429–435

    PubMed  CAS  Google Scholar 

  • Schofield D, West DC, Anthony DC, Marshal R, Sklar J (1995) Correlation of loss of heterozygosity at chromosome 9q with histological subtype in medulloblastomas. Am J Pathol 146: 472–480

    PubMed  CAS  Google Scholar 

  • Schroeder TM (1982) Genetically determined chromosome instability syndromes. Cytogenet Cell Genet 33: 119–132

    PubMed  CAS  Google Scholar 

  • Schroeder TM, Kurth R (1971) Spontaneous chromosomal breakage and high incidence of leukemia in inherited disease. Blood 37: 96–112

    PubMed  CAS  Google Scholar 

  • Schroeder TM, Anschütz F, Knopp A (1964) Spontane Chromosomenaberrationen bei familiärer Panmyelopathie Humangenetik 1: 194–196

    PubMed  CAS  Google Scholar 

  • Schroeder TM, Tilgen D, Kruger J, Vogel F (1976) Formal genetics of Fanconi’s anemia. Hum Genet 32: 257–288

    PubMed  CAS  Google Scholar 

  • Schultz JC, Shahidi NT (1993) Tumor necrosis factor-alpha overproduction in Fanconi’s anemia. Am J Hematol 42: 196–201

    PubMed  CAS  Google Scholar 

  • Schwarz A, Bhardwaj R, Aragane Y, Nahnke K, Riemann H, Metze D, Luger TA, Schwartz T (1995) Ultraviolet-B-induced apoptosis of keratinocytes: evidence for partial involvement of tumor necrosis factor-α in the formation of sunburn cells. J Invest Dermatol 104: 922–927

    PubMed  CAS  Google Scholar 

  • Scott D, Jones LA, Elyan SAG, Spreadborough A, Cowan R, Ribiero G (1993) Identification of A-T heterozygotes. In: Gatti RA, Painter RB (eds) Ataxia-telangiectasia. Springer, Berlin Heidelberg New York, pp 101–116

    Google Scholar 

  • Scott D, Spreadborough AR, Roberts SA (1994) Radiation-induced G2 delay and spontaneous chromosome aberrations in ataxia-telangiectasia homozygotes and heterozygotes. Int J Radiat Biol 66: S157–163

    PubMed  CAS  Google Scholar 

  • Seal G, Brech K, Karp SJ, Cool BL, Sirover MA (1988) Immunological lesions in human uracil DNA glycosylase: association with Bloom syndrome. Proc Natl Acad Sci USA 85: 2339–2343

    PubMed  CAS  Google Scholar 

  • Sedgwick RP, Boder E (1991) Ataxia-telangiectasia. In: deJong JMBV (ed) Hereditary neuropathies and spinocerebellar atrophies. Elsevier Science, New York, pp 347–423

    Google Scholar 

  • Selleri C, Satao T, Anderson S, Young NS, Maciejewski JP (1995) Interferon-gamma and tumor necrosis factor-alpha suppress both early and late stages of hematopoiesis and induce programmed cell death. J Cell Phys 165: 538–546

    CAS  Google Scholar 

  • Seres DS, Fornace AJ Jr (1982) Normal response of Fanconi’s anemia cells to high concentrations of O2 as determined by alkaline elution. Biochim Biophys Acta 698: 237–242

    PubMed  CAS  Google Scholar 

  • Seyschab H, Bretzel G, Friedl R, Schindler D, Sun Y, Hoehn H (1994) Modulation of the spontaneous G2 phase blockage in Fanconi anemia cells by caffeine: differences from cells arrested by X-irradiation. Mutat Res 308: 149–157

    PubMed  CAS  Google Scholar 

  • Seyschab H, Friedl R, Sun Y, Schindler D, Hoehn H, Hentze S, Schroeder-Kurth T (1995) Comparative evaluation of diepoxybutane sensitivity and cell cycle blockage in the diagnosis of Fanconi anemia. Blood 85: 2233–2237

    PubMed  CAS  Google Scholar 

  • Shanley SM, Dawkins H, Wainwright BJ, Wicking C, Heenan P, Eldon M, Searle J, Chenevix-Trench G (1995) Fine deletion mapping on the long arm of chromosome 9 in sporadic and familiar basal cell carcinomas. Hum Mol Genet 4: 129–133

    PubMed  CAS  Google Scholar 

  • Shiloh Y, Tabor E, Becker Y (1982a) Abnormal response of ataxia-telangiectasia cells to agents that break the deoxyribose moiety of DNA via a targeted free radical mechanism. Carcinogenesis 4: 1317–1322

    Google Scholar 

  • Shiloh Y, Tabor E, Becker Y (1982b) The response of ataxia-telangiectasia homozygous and heterozygous skin fibroblasts to neocarzinostatin. Carcinogenesis 3: 815–820

    PubMed  CAS  Google Scholar 

  • Shiloh Y, Parshad R, Sanford KK, Jones GM (1986) Carrier detection in ataxia-telangiectasia. Lancet 1: 689–690

    PubMed  CAS  Google Scholar 

  • Shiraishi Y, Sandberg AA (1978) Effects of mitomycin C on sister chromatid exchange in normal and Bloom’s syndrome fibroblast. Mutat Res 49: 233–238

    PubMed  CAS  Google Scholar 

  • Shiraishi Y, Taguchi T, Ozawa M, Bamazai R (1989) Different mutations responsible for the elevated sister-chromatid exchange frequencies in Bloom syndrome and X-irradiated B-lymphoblastoid cell lines originating from acute leukemia. Mutat Res 211: 273–278

    PubMed  CAS  Google Scholar 

  • Skirnisdottir S, Eiriksdottir G, Baldursson T, Barkarsdottir RB, Egilsson V, Ingvarrson S (1995) High frequency of allelic imbalance at chromosome region 16q22–23 in human breast cancer: correlation with high PgR and low S phase. Int J Cancer 64: 112–116

    PubMed  CAS  Google Scholar 

  • Spector BD, Filipovick AH, Perry GS III, Kersey JH (1982) Epidemiology of cancer in ataxia-telangiectasia. In: Bridges BA, Harnden DG (eds) Ataxia-telangiectasia. Wiley, New York, pp 103–138

    Google Scholar 

  • Sreekantaiah C, DeBraekeleer M, Haas O (1991) Cytogenetic findings in cervical carcinoma: a statistical approach. Cancer Genet Cytogenet 53: 75–81

    PubMed  CAS  Google Scholar 

  • Stacey M, Thacker S, Taylor AM (1989) Cultured skin keratinocytes from both normal individuals and basal cell naevus syndrome patients are more resistant to gamma-rays and UV light compared with cultured skin fibroblasts. Int J Radiat Biol 56: 45–58

    PubMed  CAS  Google Scholar 

  • Stark R, Andre C, Thierry D, Cherel M, Galibert F, Gluckman E (1993) The expression of cytokine and cytokine receptor genes in long-term bone marrow culture in congenital and acquired bone marrow hypoplasias. Br J Haematol 83: 560–566

    PubMed  CAS  Google Scholar 

  • Strathdee CA, Duncan AM, Buchwald M (1992a) Evidence for at least four Fanconi anaemia genes including FACC on chromosome 9. Nature Genet 1: 196–198

    PubMed  CAS  Google Scholar 

  • Strathdee CA, Gavish H, Shannon WR, Buchwald M (1992b) Cloning of cDNAs for Fanconi’s anaemia by functional complementation. Nature 358: 434

    PubMed  CAS  Google Scholar 

  • Strich S (1963) Pathological findings in 3 cases of ataxia-telangiectasia. Acta Neurol Scand 42: 354–366

    Google Scholar 

  • Strober W, Wochner RD, Barlow MH, McFarlin DE, Waldmann TA (1968) Immunoglobulin metabolism in ataxia telangiectasia. J Clin Invest 47: 1905–1915

    PubMed  CAS  Google Scholar 

  • Sullaba L, Henner K (1926) Contribution a l’indépendance de l’athétose double idiopathique et congénitale. Atteinte familiale, syndrome dystrophique, signe du réseau vasculaire conjunctival, intégrité psychique. Rev Neurol 1: 541–562

    Google Scholar 

  • Summers WC, Sarkar SN, Glazer PM (1985) Direct and inducible mutagenesis in mammalian cells. CancerSurv 4: 517–528

    PubMed  CAS  Google Scholar 

  • Sung P, Prakash L, Matson SW, Prakash S (1987) RAD3 protein of Saccharomyces cerevisiae is a DNA helicase. Proc Natl Acad Sci USA 84: 8951–8955

    PubMed  CAS  Google Scholar 

  • Swift M (1971) Fanconi’s anaemia in the genetics of neoplasia. Nature 230: 370–373

    PubMed  CAS  Google Scholar 

  • Swift M (1994) Ionizing radiation, breast cancer, and ataxia-telangiectasia. J Natl Cancer Inst 86: 1571–1572

    PubMed  CAS  Google Scholar 

  • Swift M, Sholman L, Perry M, Chase C (1976) Malignant neoplasms in the families of patients with ataxia-telangiectasia. Cancer Res 35: 208–215

    Google Scholar 

  • Swift M, Caldwell RJ, Chase C (1980) Reassessment of cancer predisposition of Fanconi anaemia heterozygotes. J Natl Cancer Inst 65: 863–867

    PubMed  CAS  Google Scholar 

  • Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT (1986) The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet 39: 573–583

    PubMed  CAS  Google Scholar 

  • Swift M, Reitnauer PJ, Morrel D, Chase CL (1987) Breast and other cancers in families with ataxia-teloangeictasia. N Engl J Med 316: 1289–1294

    PubMed  CAS  Google Scholar 

  • Swift M, Morrell D, Massey RB, Chase CL (1991) Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325: 1831–1836

    PubMed  CAS  Google Scholar 

  • Szalay GC (1963) Dwarfism with skin manifestations. J Pediat 62: 686–695

    PubMed  CAS  Google Scholar 

  • Taccioli GE, Gottlieb TM, Blunt T, Priestley A, Demengeot J, Mizuta R, Lehmann AR, Alt FW, Jackson SP, Jeggo PA (1994) Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265: 1442–1445

    PubMed  CAS  Google Scholar 

  • Taylor AMR (1978) Unrepaired DNA strand breaks in irradiated ataxia-telangiectasia lymphocytes suggested from cytogenetic observations. Mutat Res 50: 407–418

    PubMed  CAS  Google Scholar 

  • Taylor AMR (1992) Ataxia telangiectasia genes and predisposition to leukaemia, lymphoma and breast cancer. Br J Cancer 66: 5–9

    PubMed  CAS  Google Scholar 

  • Taylor AMR, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S, Bridges BA (1975) Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature 258: 427–428

    PubMed  CAS  Google Scholar 

  • Taylor AMR, Metcalfe JA, McConville C (1989) Increased radiosensitivity and the basic defect in ataxia telangiectasia. Int J Radiat Biol 56: 677–684

    PubMed  CAS  Google Scholar 

  • Taylor AMR, Oxford JM, Metcalfe JA (1981) Spontaneous cytogenetic abnormalities in lymphocytes from thirteen patients with ataxia telangiectasia. Int J Cancer 27: 311–319

    PubMed  CAS  Google Scholar 

  • Teebor GW, Duker NJ (1975) Human endonuclease activity for DNA apurinic sites. Nature 158: 544–547

    Google Scholar 

  • Thiberville L, Bourguignon J, Metayer J, Bost F, Diarra-Mehrpour M, Bignon J, Lam S, Martin JP, Nouvet G (1995) Frequency and prognostic evaluation of 3p21–22 allelic losses in non-small-cell lung cancer. Int J Cancer 64: 371–377

    PubMed  CAS  Google Scholar 

  • Tomlinson IP, Strickland JE, Lee AS, Bromley L, Evans MF, Morton J, McGee JO (1995) Loss of heterozygosity on chromosome 11 q in breast cancer. J Clin Pathol 48: 424–428

    PubMed  CAS  Google Scholar 

  • Tomlinson IPM, Gammack AJ, Stickland JE, Mann GJ, MacKier RTM, Iefford RF, McGee JO (1993) Loss of heterozygosity in malignant melanoma at loci on chromosome 11 and 17 implicated in the pathogenesis of other cancers. Genes Chromosomes Cancer 7: 169–172

    PubMed  CAS  Google Scholar 

  • Troelstra C, Jaspers NG (1994) Recombination and repair. Ku starts at the end. Curr Biol 4: 1149–1151

    PubMed  CAS  Google Scholar 

  • Tsai-Pflugfelder M, Liu L, Liu A, Tewey K, Whang-Peng J, Knutsen T, Huebner K, Croce C, Wang J (1988) Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localizating of the gene to chromosome region 17q21–22. Proc Natl Acad Sci USA 85: 7177–7181

    PubMed  CAS  Google Scholar 

  • Turesson I (1990) Individual variation and dose dependency in the progression rate of skin telangiectasias. Int J Radiat Oncol Biol Phys 19: 1569–1574

    PubMed  CAS  Google Scholar 

  • Uhrhammer N, Cancannon P, Huo Y, Nakamura Y, Gatti RA (1994) A pulsed-field gel electrophoresis map in the ataxia-telangiectasia region of chromosome 11q22.3. Genomics 20: 278–280

    PubMed  CAS  Google Scholar 

  • Uhrhammer N, Lange E, Porras O, Naeim A, Chen X, Sheikhavandi S, Chiplunkar S, Yang L, Dandekar S, Liang T et al (1995) Sublocalization of an ataxia-telangiectasia gene distal to D11S384 by ancestral haplotyping in Costa Rican families. Am J Hum Genet 57: 103–111

    PubMed  CAS  Google Scholar 

  • van Laar T, Steegenga WT, Jochemsen AG, Terleth C, van der Eb AJ (1994) Bloom’s syndrome cells GM1492 lack detectable p53 protein but exhibit normal G1 cell-cycle arrest after UV irradiation. Oncogene 9: 981–983

    PubMed  Google Scholar 

  • van Leeuven H (1933) Ein Fall von “konstitutioneller infantiler perniziösähnlicher Anämie” (Fanconi). Folia Haematol (Lpz) 49: 434–443

    Google Scholar 

  • Verlander PC, Lin JD, Udono MU, Zhang Q, Gibson RA, Mathew CG, Auerbach AD (1994) Mutation analysis of the Fanconi anemia gene FACC. Am J Hum Genet 54: 595–601

    PubMed  CAS  Google Scholar 

  • Verlander PC, Kaporis A, Liu Q, Zhang Q, Seligsohn U, Auerbach AD (1995) Carrier frequency of the IVS4 + 4A → T mutation of the Fanconi anemia gene FACC in the Ashkenazi Jewish population. Blood 86: 4034–4038

    PubMed  CAS  Google Scholar 

  • Vijayalakshmi E, Wunder P, Schroeder TM (1985) Spontaneous 6-thioguanine-resistant lymphocytes in Fanconi anemia patients and their heterozygous parents. Hum Genet 70: 264–270

    Google Scholar 

  • Vogel VG (1994) Screening younger women at risk for breast cancer. Monogr Natl Cancer Inst 16: 55–60

    PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9: 138–141

    PubMed  CAS  Google Scholar 

  • Vollberg TM, Seal G, Sirover MA (1987) Monoclonal antibodies detect conformational abnormality of uracil DNA glycosylase in Bloom’s syndrome cells. Carcinogenesis 8: 1725–1729

    PubMed  CAS  Google Scholar 

  • Waghray M, Sigut D, Einspenner M, Kunhi M, al-Sedairy ST, Hannan MA (1992) Chronic gamma-irradiation results in increased cell killing and chromosomal aberration with specific breakpoints in fibroblast cell strains derived from non-Hodgkin’s lymphoma patients. Mutat Res 284: 223–231

    PubMed  CAS  Google Scholar 

  • Watts PM, Louis EJ, Borts RH, Hickson ID (1995) Sgs 1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81: 253–260

    Google Scholar 

  • Weeks DE, Paterson MC, Lange K, Andrais B, Davis RC, Yoder F, Gatti RA (1991) Assessment of chronic gamma radiosensitivity as an in vitro assay for heterozygote identification of ataxia-telangiectasia. Radiat Res 128: 90–99

    PubMed  CAS  Google Scholar 

  • Weemaes CM, Bakkeren JA, Haraldsson A, Smeets DF (1991) Immunological studies in Bloom’s syndrome. A follow-up report. Ann Genet 34: 201–205

    PubMed  CAS  Google Scholar 

  • Weemaes CM, Smeets DF, van der Burgt CJ (1994) Nijmegen breakage syndrome: a progress report. Int J Radiat Biol 66: S185–188

    PubMed  CAS  Google Scholar 

  • Weichselbaum RR, Nove J, Little JB, (1980) X-ray sensitivity of fifty-three human diploid fibroblast cell strains from patients with characterized genetic disorders. Cancer Res 40: 920–925

    PubMed  CAS  Google Scholar 

  • Weinert TA, Kiser GL, Hartwell LH (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8: 652–665

    PubMed  CAS  Google Scholar 

  • Weitzel JN, Patel J, Smith DM, Goodman A, Safaii H, Ball HG (1994) Molecular genetic changes associated with ovarian cancer. Gynecol Oncol 55: 245–252

    PubMed  CAS  Google Scholar 

  • Weksberg R, Buchwald M, Sargent P, Thompson MW, Siminovitch L (1979) Specific cellular defects in patients with Fanconi anemia. J Cell Physiol 101: 311–323

    PubMed  CAS  Google Scholar 

  • Weksberg R, Smith C, Anson-Cartwright L, Maloney K (1988) Bloom syndrome: a single complementation group defines patients of diverse ethnic origin. Am J Hum Genet 42: 816–824

    PubMed  CAS  Google Scholar 

  • Weshimer K, Swift M (1982) Congenital malformations and developmental disabilities in ataxia-telangiectasia, Fanconi anemia and xeroderma pigmentosum. Am J Hum Genet 34: 781–793

    Google Scholar 

  • West CM, Hendry J, Scott D et al (1991) 25th Paterson symposium — is there a future for radiosensitivity testing? Br J Cancer 24: 146s–152s

    Google Scholar 

  • West CM, Elyan SA, Berry P, Cowan R, Scott D (1995) A comparison of the radiosensitivity of lymphocytes from normal donors, cancer patients, individuals with ataxia-telangiectasia (A-T) and A-T heterozygotes. Int J Radiat Biol 68: 197–203

    PubMed  CAS  Google Scholar 

  • Wevrick R, Clarke CA, Buchwald M (1993) Cloning and analysis of murine Fanconi anemia group C cDNA. Hum Mol Genet 2: 655–662

    PubMed  CAS  Google Scholar 

  • Whitney M, Thayer M, Reifsteck C, Olson S, Smith L, Jakobs PM, Leach R, Naylor S, Joenje H, Grompe M (1995) Microcell mediated chromosome transfer maps the Fanconi anaemia group D gene to chromosome 3p. Nature Genet 11: 341–343

    PubMed  CAS  Google Scholar 

  • Wiencke JK, Wara DW, Little JB, Kelsey KT (1992) Heterogeneity in the clastogenic response to X-rays in lymphocytes from ataxia-telangiectasia heterozygotes and controls. Cancer Causes Control 3: 237–245

    PubMed  CAS  Google Scholar 

  • Willis AE, Lindahl T (1987) DNA ligase I deficiency in Bloom’s syndrome. Nature 325: 355–357

    PubMed  CAS  Google Scholar 

  • Winqvist R, Hampton GM, Mannermaa A, Blanco G, Alavaikko M, Kiviniemi H, Taskinen PJ, Evans GA, Wright FA, Newsham I et al (1995) Loss of heterozygosity for chromosome 11 in primary human breast tumors is associated with poor survival after metastasis. Cancer Res 55: 2660–2664

    PubMed  CAS  Google Scholar 

  • Woods CG, Taylor AM (1992) Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals. Q J Med 82: 169–179

    PubMed  CAS  Google Scholar 

  • Woods CG, Bundey SE, Taylor AMR (1990) Unusual features in the inheritance of ataxia telangiectasia. Hum Genet 84: 555–562

    PubMed  CAS  Google Scholar 

  • Wooster R, Ford D, Mangion J, Ponder BA, Peto J, Easton DF, Stratton MR (1993) Absence of linkage to the ataxia telangiectasia locus in familial breast cancer. Hum Genet 92: 91–94

    PubMed  CAS  Google Scholar 

  • Wride MA, Sanders EJ (1995) Potential roles for tumor necrosis factor α during embryonic development. Anat Embryol (Bevl) 191: 1–10

    CAS  Google Scholar 

  • Wride MA, Lapchak PH, Sanders EJ (1994) Distribution of TNFα-like proteins correlates with some regions of programmed cell death in the chick embryo. Int J Dev Biol 38: 673–682

    PubMed  CAS  Google Scholar 

  • Wunder E, Fleischer-Reischmann B (1983) Response of lymphocytes from Fanconi’s anemia patients and their heterozygous relatives to 8-methoxy-psoralene in a cloning survival test system. Hum Genet 64: 167–172

    PubMed  CAS  Google Scholar 

  • Wunder E, Mortensen BT, Schilling F, Henon PR (1993) Anomalous plasma concentrations and impaired secretion of growth factors in Fanconi’s anemia. Stem Cells (Dayt) 11 [Suppl 2]: 144–149

    Google Scholar 

  • Yamashita T, Barber DL, Zhu Y, Wu N, D’Andrea AD (1994) The Fanconi anemia polypeptide FACC is localized to the cytoplasm. Proc Natl Acad Sci USA 91: 6712–6716

    PubMed  CAS  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–247

    PubMed  CAS  Google Scholar 

  • Yoshimitsu K, Kobayashi Y, Usui T (1984) Decreased superoxide dismutase activity of erythrocytes and leukocytes in Fanconi’s anemia. Acta Haematol 72: 208–210

    PubMed  CAS  Google Scholar 

  • Young BR, Painter RB (1989) Radioresistant DNA synthesis and human genetic diseases. Hum Genet 82: 113–117

    PubMed  CAS  Google Scholar 

  • Youssoufian H (1994) Localization of Fanconi anemia C protein to the cytoplasm of mammalian cells. Proc Natl Acad Sci USA 91: 7975–7979

    PubMed  CAS  Google Scholar 

  • Youssoufian H, Auerbach AD, Verlander PC, Steimle V, Mach B (1995) Identification of cytosolic proteins that bind to the Fanconi anemia complementation group C polypeptide in vitro. Evidence for a multimeric complex. J Biol Chem 270: 9876–9882

    PubMed  CAS  Google Scholar 

  • Yumoto Y, Hanafusa T, Hada H, Morita T, Oguchi S, Shinji N, Mitani T, Hamaya K, Koide N, Tsuji T (1995) Loss of heterozygosity and analysis of mutation of p53 in hepatocellular carcinoma. J Gastroenterol Hepatol 10: 179–185

    PubMed  CAS  Google Scholar 

  • Zambeti-Bosseler F, Scott D (1980) Cell death, chromosome damage and mitotic delay in normal human, ataxia telangiectasia and retinoblastoma fibroblasts after X-irradiation. Int J Radiat Biol 39: 547–558

    Google Scholar 

  • Zhang Y, Harada A, Bluethmann H, Wang JB, Nakao S, Matsuchima K (1995) Tumor necrosis factor (TNF) is a physiologic regulator of hematopoietic progenitor cells: increase of early hematopoietic progenitor cells in TNF receptor p55-deficient mice in vivo and potent inhibition of progenitor cell proliferation by TNF alpha in vitro. Blood 86: 2930–2937

    PubMed  CAS  Google Scholar 

  • Zimmerman RJ, Chan A, Leadon SA (1989) Oxidative damage in murine tumor cells treated in vitro by recombinant human tumor necrosis factor. Cancer Res 49: 1644–1648

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyn, M.S. (1997). Chromosome Instability Syndromes: Lessons for Carcinogenesis. In: Kastan, M.B. (eds) Genetic Instability and Tumorigenesis. Current Topics in Microbiology and Immunology, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60505-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60505-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64434-4

  • Online ISBN: 978-3-642-60505-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics