Skip to main content

Chromosome Instability

  • Chapter
  • First Online:
The Principles of Clinical Cytogenetics

Abstract

Two levels of genetic instability have recently been characterized in human cancers: subtle sequence changes observed at the nucleotide level and instability that is visible at the chromosomal level (Lengauer et al., Nature 396(6712):643–649, 1998). The high incidence of chromosome instability reported in neoplastic processes has made this an area of active investigation.

Chromosome instability describes a variety of chromosome alterations, including numerical and structural chromosomal rearrangements observed at an increased rate when compared with normal controls. Numerical changes can be the consequence of abnormal segregation at the metaphase/anaphase transition. Dysregulation of genes involved in chromosome condensation, sister chromatid cohesion, kinetochore structure and function, and centrosome/microtubule formation and dynamics have been implicated in the formation of aneuploidy, hypodiploidy, and polyploidy, as have cell cycle checkpoint genes. Chromosome breaks and telomere dysfunction can result in various structural rearrangements (deletions, duplications, inversions, insertions, and translocations). Impairment of DNA repair, DNA replication, or DNA recombination is responsible for causing sister chromatid exchanges, fragile sites, chromatid/chromosome breaks, and mutagen sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396(6712):643–9.

    Article  PubMed  CAS  Google Scholar 

  2. Hittelman WN. Genetic instability in epithelial tissues at risk for cancer. Ann N Y Acad Sci. 2001;952:1–12.

    Article  PubMed  CAS  Google Scholar 

  3. Shaffer LG, Slovak ML, Campbell LJ, editors. ISCN(2009): an international system for human cytogenetic nomenclature. Basel: S. Karger. Medical and Scientific Publishers; 2009.

    Google Scholar 

  4. Smith DI, Huang H, Wang L. Common fragile sites and cancer (review). Int J Oncol. 1998;12(1):187–96.

    PubMed  CAS  Google Scholar 

  5. Sutherland GR, Mattei JF. Report of the committee on cytogenetic markers. Cytogenet Cell Genet. 1987;46(1–4):316–24.

    Article  PubMed  CAS  Google Scholar 

  6. Simonic I, Gericke GS. The enigma of common fragile sites. Hum Genet. 1996;97(4):524–31.

    Article  PubMed  CAS  Google Scholar 

  7. Hecht F, Ramesh KH, Lockwood DH. A guide to fragile sites on human chromosomes. Cancer Genet Cytogenet. 1990;44(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  8. Genome Data Base (GDB). http://www.gdb.org/generabin/genera/hgd/FragileSites?

  9. Smeets DF, van de Klundert FA. Common fragile sites in man and three closely related primate species. Cytogenet Cell Genet. 1990;53(1):8–14.

    Article  PubMed  CAS  Google Scholar 

  10. Sutherland GR, Richards RI. Fragile sites-cytogenetic similarity with molecular diversity. Am J Hum Genet. 1999;64(2):354–9.

    Article  PubMed  CAS  Google Scholar 

  11. Le Beau MM, Rassool FV, Neilly ME, et al. Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction. Hum Mol Genet. 1998;7(4):755–61.

    Article  PubMed  Google Scholar 

  12. Jones C, Mullenbach R, Grossfeld P, et al. Co-localisation of CCG repeats and chromosome deletion breakpoints in Jacobsen syndrome: evidence for a common mechanism of chromosome breakage. Hum Mol Genet. 2000;9(8):1201–8.

    Article  PubMed  CAS  Google Scholar 

  13. Mariani T, Musio A, Simi S. No statistical association between fragile sites and constitutional chromosome breakpoints. Cancer Genet Cytogenet. 1995;85(1):78–81.

    Article  PubMed  CAS  Google Scholar 

  14. Kahkonen M, Tengstrom C, Alitalo T, Matilainen R, Kaski M, Airaksinen E. Population cytogenetics of folate-sensitive fragile sites. II. Autosomal rare fragile sites. Hum Genet. 1989;82(1):3–8.

    Article  PubMed  CAS  Google Scholar 

  15. Yunis JJ, Soreng AL. Constitutive fragile sites and cancer. Science. 1984;226(4679):1199–204.

    Article  PubMed  CAS  Google Scholar 

  16. Gumus G, Sunguroglu A, Tukun A, Sayin DB, Bokesoy I. Common fragile sites associated with the breakpoints of chromosomal aberrations in hematologic neoplasms. Cancer Genet Cytogenet. 2002;133(2):168–71.

    Article  PubMed  CAS  Google Scholar 

  17. Wilke CM, Hall BK, Hoge A, Paradee W, Smith DI, Glover TW. FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet. 1996;5(2):187–95.

    Article  PubMed  CAS  Google Scholar 

  18. Hellman A, Zlotorynski E, Scherer SW, et al. A role for common fragile site induction in amplification of human oncogenes. Cancer Cell. 2002;1(1):89–97.

    Article  PubMed  CAS  Google Scholar 

  19. Coquelle A, Pipiras E, Toledo F, Buttin G, Debatisse M. Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell. 1997;89(2):215–25.

    Article  PubMed  CAS  Google Scholar 

  20. Egeli U, Karadag M, Tunca B, Ozyardimci N. The expression of common fragile sites and genetic predisposition to squamous cell lung cancers. Cancer Genet Cytogenet. 1997;95(2):153–8.

    Article  PubMed  CAS  Google Scholar 

  21. Sutherland GR, Baker E. The clinical significance of fragile sites on human chromosomes. Clin Genet. 2000;58(3):157–61.

    Article  PubMed  CAS  Google Scholar 

  22. Auerbach AD. Fanconi anemia and leukemia: tracking the genes. Leukemia. 1992;6 Suppl 1:1–4.

    PubMed  Google Scholar 

  23. Joenje H, Patel KJ. The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet. 2001;2(6):446–57.

    Article  PubMed  CAS  Google Scholar 

  24. Kutler DI, Auerbach AD. Fanconi anemia in Ashkenazi Jews. Fam Cancer. 2004;3(3–4):241–8.

    Article  PubMed  CAS  Google Scholar 

  25. Moldovan GL, D’Andrea AD. How the fanconi anemia pathway guards the genome. Annu Rev Genet. 2009;43:223–49.

    Article  PubMed  CAS  Google Scholar 

  26. Wijker M, Morgan NV, Herterich S, et al. Heterogeneous spectrum of mutations in the Fanconi anaemia group A gene. Eur J Hum Genet. 1999;7(1):52–9.

    Article  PubMed  CAS  Google Scholar 

  27. Faivre L, Guardiola P, Lewis C, et al. Association of complementation group and mutation type with clinical outcome in fanconi anemia. European Fanconi Anemia Research Group. Blood. 2000; 96(13):4064–70.

    PubMed  CAS  Google Scholar 

  28. http://www.rockefeller.edu/fanconi/mutate/. Accessed 14 Oct 2011.

  29. Callen E, Samper E, Ramirez MJ, et al. Breaks at telomeres and TRF2-independent end fusions in Fanconi anemia. Hum Mol Genet. 2002;11(4):439–44.

    Article  PubMed  CAS  Google Scholar 

  30. Gatti RA, Boder E, Vinters HV, Sparkes RS, Norman A, Lange K. Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis. Medicine (Baltimore). 1991;70(2):99–117.

    CAS  Google Scholar 

  31. Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet. 1986;39(5):573–83.

    PubMed  CAS  Google Scholar 

  32. Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med. 1991;325(26):1831–6.

    Article  PubMed  CAS  Google Scholar 

  33. Broeks A, Urbanus JH, Floore AN, et al. ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am J Hum Genet. 2000;66(2):494–500.

    Article  PubMed  CAS  Google Scholar 

  34. Concannon P, Gatti RA. Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum Mutat. 1997;10(2):100–7.

    Article  PubMed  CAS  Google Scholar 

  35. Gilad S, Bar-Shira A, Harnik R, et al. Ataxia-telangiectasia: founder effect among north African Jews. Hum Mol Genet. 1996;5(12): 2033–7.

    Article  PubMed  CAS  Google Scholar 

  36. Meyn MS. High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science. 1993;260(5112):1327–30.

    Article  PubMed  CAS  Google Scholar 

  37. Nahas SA, Butch AW, Du L, Gatti RA. Rapid flow cytometry-based structural maintenance of chromosomes 1 (SMC1) phosphorylation assay for identification of ataxia-telangiectasia homozygotes and heterozygotes. Clin Chem. 2009;55(3):463–72.

    Article  PubMed  CAS  Google Scholar 

  38. Stumm M, Gatti RA, Reis A, et al. The ataxia-telangiectasia-variant genes 1 and 2 are distinct from the ataxia-telangiectasia gene on chromosome 11q23.1. Am J Hum Genet. 1995;57(4):960–2.

    PubMed  CAS  Google Scholar 

  39. Varon R, Vissinga C, Platzer M, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93(3):467–76.

    Article  PubMed  CAS  Google Scholar 

  40. Carney JP, Maser RS, Olivares H, et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell. 1998;93(3):477–86.

    Article  PubMed  CAS  Google Scholar 

  41. Zhao S, Weng YC, Yuan SS, et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature. 2000;405(6785):473–7.

    Article  PubMed  CAS  Google Scholar 

  42. Carlomagno F, Chang-Claude J, Dunning AM, Ponder BA. Determination of the frequency of the common 657Del5 Nijmegen breakage syndrome mutation in the German population: no association with risk of breast cancer. Genes Chromosomes Cancer. 1999;25(4):393–5.

    Article  PubMed  CAS  Google Scholar 

  43. Varon R, Seemanova E, Chrzanowska K, et al. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur J Hum Genet. 2000;8(11):900–2.

    Article  PubMed  CAS  Google Scholar 

  44. Hagleitner MM, Lankester A, Maraschio P, et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet. 2008;45(2):93–9.

    Article  PubMed  CAS  Google Scholar 

  45. Sumner AT, Mitchell AR, Ellis PM. A FISH study of chromosome fusion in the ICF syndrome: involvement of paracentric heterochromatin but not of the centromeres themselves. J Med Genet. 1998;35(10):833–5.

    Article  PubMed  CAS  Google Scholar 

  46. Gennery AR, Slatter MA, Bredius RG, et al. Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome. Pediatrics. 2007;120(5):e1341–4.

    Article  PubMed  Google Scholar 

  47. McDaniel LD, Prueitt R, Probst LC, et al. Novel assay for Roberts syndrome assigns variable phenotypes to one complementation group. Am J Med Genet. 2000;93(3):223–9.

    Article  PubMed  CAS  Google Scholar 

  48. Vega H, Waisfisz Q, Gordillo M, et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet. 2005;37(5):468–70.

    Article  PubMed  CAS  Google Scholar 

  49. Barbosa AC, Otto PA, Vianna-Morgante AM. Replication timing of homologous alpha-satellite DNA in Roberts syndrome. Chromosome Res. 2000;8(7):645–50.

    Article  PubMed  CAS  Google Scholar 

  50. Vega H, Trainer AH, Gordillo M, et al. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome. J Med Genet. 2010;47(1):30–7.

    Article  PubMed  CAS  Google Scholar 

  51. Miriam Gordillo, Hugo Vega, Jabs EW. GeneReviews. Seattle: University of Washington; 2010.

    Google Scholar 

  52. Epstein CJ, Martin GM, Schultz AL, Motulsky AG. Werner’s syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore). 1966;45(3):177–221.

    CAS  Google Scholar 

  53. Ogburn CE, Oshima J, Poot M, et al. An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet. 1997;101(2):121–5.

    Article  PubMed  CAS  Google Scholar 

  54. Wyllie FS, Jones CJ, Skinner JW, et al. Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet. 2000;24(1):16–7.

    Article  PubMed  CAS  Google Scholar 

  55. Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene. Science. 1996;272(5259):258–62.

    Article  PubMed  CAS  Google Scholar 

  56. Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez H, Karlseder J. Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci U S A. 2007;104(7):2205–10.

    Article  PubMed  CAS  Google Scholar 

  57. Yu CE, Oshima J, Wijsman EM, et al. Mutations in the consensus helicase domains of the Werner syndrome gene. Werner’s Syndrome Collaborative Group. Am J Hum Genet. 1997;60(2):330–41.

    PubMed  CAS  Google Scholar 

  58. German J, Schonberg S, Louie E, Chaganti RS. Bloom’s syndrome. IV. Sister-chromatid exchanges in lymphocytes. Am J Hum Genet. 1977;29(3):248–55.

    PubMed  CAS  Google Scholar 

  59. Gardner RJM, Sutherland GR. Chromosome abnormalities and genetic counseling. 2nd ed. New York: Oxford University Press; 1996.

    Google Scholar 

  60. Karow JK, Constantinou A, Li JL, West SC, Hickson ID. The Bloom’s syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci USA. 2000; 97(12):6504–8.

    Article  PubMed  CAS  Google Scholar 

  61. Gruber SB, Ellis NA, Scott KK, et al. BLM heterozygosity and the risk of colorectal cancer. Science. 2002;297(5589):2013.

    Article  PubMed  CAS  Google Scholar 

  62. Straughen JE, Johnson J, McLaren D, et al. A rapid method for detecting the predominant Ashkenazi Jewish mutation in the Bloom’s syndrome gene. Hum Mutat. 1998;11(2):175–8.

    Article  PubMed  CAS  Google Scholar 

  63. Viguié C. Xeroderma pigmentosum. Atlas of genetics and cytogenetics in oncology and haematology. http://www.infobiogen.fr/services/chromcancer/Kprones/XerodermaID10004.html.

  64. Swift M, Chase C. Cancer in families with xeroderma pigmentosum. J Natl Cancer Inst. 1979;62(6):1415–21.

    PubMed  CAS  Google Scholar 

  65. Bootsma D, Kraemer KH, Cleaver JE, Hoeijmakers JHJ, editors. Chapter 28: Nucleotide excision repair syndromes: Xeroderma pigmentosum, cockayne syndrome, and trichothiodystrophy. New York: The McGraw-Hill Companies, Inc. Edited by Charles R. Scriver wso, ed.

    Google Scholar 

  66. Berneburg M, Lehmann AR. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv Genet. 2001;43:71–102.

    Article  PubMed  CAS  Google Scholar 

  67. Norgauer J, Idzko M, Panther E, Hellstern O, Herouy Y. Xeroderma pigmentosum. Eur J Dermatol. 2003;13(1):4–9.

    PubMed  Google Scholar 

Download references

Acknowledgment

The author is grateful to Xiaorong Zhao, Ph.D., at the Cytogenetics and Molecular Oncology Laboratory at US Labs, A Labcorp Company, for manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Xiang Zhang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, XX. (2013). Chromosome Instability. In: Gersen, S., Keagle, M. (eds) The Principles of Clinical Cytogenetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1688-4_14

Download citation

Publish with us

Policies and ethics