Skip to main content

Highly Productive Plant Continuous Cell-Free System

  • Chapter
Cell-Free Translation Systems

Abstract

The development of a system capable of synthesizing any desired protein on a preparative scale is one of the most important endeavors in biotechnology today. Three strategies are currently being used: chemical synthesis, in vivo expression, and cell-free protein synthesis. The first two methods have severe limitations: chemical synthesis is not feasible for the synthesis of long peptides because of low yield, and in vivo expression can produce only those proteins that do not affect the physiology of the host cell [1–3]. Cell-free translation systems, in contrast, can synthesize proteins with high speed and accuracy, approaching in vivo rates [4–5], and they can express proteins that would interfere with cell physiology. However, they are relatively inefficient because of their instability[6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golf SA, Goldberg A L (1987) An increased content of protease La, the Ion gene product, increases protein degradation and blocks growth in E. coli. J Biol Chem 262: 4508–4515

    Google Scholar 

  2. Chrunyk BA, Evans J, Lillquist J, Young P, Wetzel R (1993) Inclusion body formation and protein stability in sequence variants of interleukin-1β. J Biol Chem 268: 18053–18061

    CAS  Google Scholar 

  3. Henrich B, Lubitz W, Plapp R (1982) Lysis of E. coli by induction of cloned φX174 gene. Mol Gen Genet 185: 493–497

    CAS  Google Scholar 

  4. Kurland C G (1982) Translational accuracy in vitro. Cell 28: 201–202

    Article  CAS  Google Scholar 

  5. Pavlov MY, Ehrenberg M (1996) Rate of translation of natural mRNA in an optimized in vitro system. Arch Biochem Biophys 328: 9–16

    Article  CAS  Google Scholar 

  6. Roberts BE, Paterson BM (1973) Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ. Proc Natl Acad Sci USA 70: 2330–2334

    Article  CAS  Google Scholar 

  7. Spirin AS, Baranov VI, Ryabova LA, Ovodov Syu, Alakhov YuB (1988) A continuous cell- free translation system capable of producing polypeptides in high yield. Science 242: 1162–1164

    Article  CAS  Google Scholar 

  8. Baranov VI, Morozov IYu, Ortlepp SA, Spirin AS (1989) Gene expression in a cell-free system on the preparative scale. Gene 84: 463–466

    Article  CAS  Google Scholar 

  9. Endo Y, Otsuzuki S, Ito K, Miura K (1992) Production of an enzymatic active protein using a continuous flow cell-free translation system. J Biotechnol 25: 221–230

    Article  CAS  Google Scholar 

  10. Kigawa T, Yokoyama S (1991) A continuous cell-free protein synthesis system for coupled transcription-translation. J Biochem 110: 166–168

    CAS  Google Scholar 

  11. Kim DM., Kigawa T, Choi CY, Yokoyama S (1996) A highly efficient cell-free protein synthesis system from E. coli. Eur J Biochem 239: 881–886

    Article  CAS  Google Scholar 

  12. Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) Cell-free production and stable-isotope labeling of milligram quantities of protein. FEBS Lett 442: 15–19

    Article  CAS  Google Scholar 

  13. Kawarasaki Y, Kawai T, Nakano H, Yamane T (1995) A long-lived batch reaction system of cell-free protein synthesis. Anal Biochem 226: 320–324

    Article  CAS  Google Scholar 

  14. Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. J Biol Chem 262: 5908–5912

    CAS  Google Scholar 

  15. Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A-chain. J Biol Chem 262: 8128–8130

    CAS  Google Scholar 

  16. Wool IG, Glück A, Endo Y (1992) Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translation. Trends Biochem Sci 17: 266–269

    Article  CAS  Google Scholar 

  17. Barbieri L, Battelli MG, Stirpe F (1993) Ribosome-inactivating proteins from plants. Biochim Biophys Acta 1154: 237–282

    CAS  Google Scholar 

  18. Taylor S, Massiah A, Lomonossoff G, Robert LM, Lord JM, Hartely MR (1994) Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J 5: 827–853

    Article  CAS  Google Scholar 

  19. Ready MP, Brown DT, Robertus JD (1986) Extracellular localization of pokeweed antiviral protein. Proc Natl Acad Sci USA 83: 5053–5056

    Article  CAS  Google Scholar 

  20. Massiah AJ, Hartely MR (1995) Wheat ribosome-inactivating proteins: Seed and leaf forms with different specificities and cofactor requirements. Planta 197: 633–640

    Article  CAS  Google Scholar 

  21. Ogasawara T, Sawasaki T, Morishita R, Ozawa A, Madin K, Endo Y (1999) A new class of enzyme acting on damaged ribosomes: ribosomal RNA apurinic site specific lyase found in wheat germ. The EMBO J 18: 6522–6531

    Article  CAS  Google Scholar 

  22. Madin K, Sawasaki T, Ogasawara T, Endo Y (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: Plants apparently contain a suicide system directed at ribosomes. Proc Natl Acad Sci USA 97: 559–564

    Article  CAS  Google Scholar 

  23. Johnston FB, Stern H (1957) Mass-isolation of viable wheat embryos. Nature 179: 160–161

    Article  CAS  Google Scholar 

  24. Erickson AH, Blobel G (1983) Cell-free translation of messenger RNA in a wheat germ system. Meths Enzymol 96: 38–50

    Article  CAS  Google Scholar 

  25. Hirao I, Yoshinari S, Yokoyama S, Endo Y, Ellington AD (1997) RNA aptamers that bind to and inhibit the ribosome-inactivating protein, pepocin. Nucleic Acids Symp Ser 37: 283–284

    CAS  Google Scholar 

  26. Lodish HF, Housman D, Jacobsen M (1971) Initiation of haemoglobin synthesis. Specific inhibition by antibiotics and bacteriophage ribonucleic acid. Biochemistry 10: 2348–2356

    Article  CAS  Google Scholar 

  27. Bohlmann H (1994) The role of thionins in plant protection. Critical Rev in Plant Sciences. 13: 1–16

    CAS  Google Scholar 

  28. Colilla FJ, Rocher A, Mendez E (1990) Gamma-purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett 270: 191–194

    Article  CAS  Google Scholar 

  29. Brummer J, Thole H, Kloppstech K (1994) Hordothionins inhibit protein synthesis at the level of initiation in the wheat germ system. Eur J Biochem 219: 425–433

    Article  CAS  Google Scholar 

  30. Matsushita S (1959) On the protein formation and changes of the amounts of the ribonucleic acid and ribonuclease activity in the grains during the ripening process of wheat. Memoirs of the Res. Inst, for Food Science, Kyoto Univ. No. 19: 1–4

    Google Scholar 

  31. Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheet J (1996) Engineered GFP as a vital reporter in plants. Current Biology 6: 325–330

    Article  CAS  Google Scholar 

  32. Hamamoto H, Sugiyama K, Nakagawa N, Hashida E, Matsunaga Y, Takemoto S, Watanabe Y, Okada Y (1999) A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-1-covering enzyme inhibitor in transgenic tobacco and tomato. Biotechnology 11: 930–932

    Google Scholar 

  33. Dawson WO (1992) Tobamovirus-plant interaction. Virology 186: 359–367

    Article  CAS  Google Scholar 

  34. Sachs AB, Sarnow P, Hentze M W (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89: 831–838

    Article  CAS  Google Scholar 

  35. Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by eukaryotic translation initiation factors. Molecular Cell 2: 135–140

    Article  CAS  Google Scholar 

  36. Netzer WJ, Hartl FU (1997) Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388: 343–349

    Article  CAS  Google Scholar 

  37. Mattheakis LC, Bhatt RR, Dower WJ (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci USA 91: 9022–9026

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Madin, K., Sawasaki, T., Endo, Y. (2002). Highly Productive Plant Continuous Cell-Free System. In: Spirin, A.S. (eds) Cell-Free Translation Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59379-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59379-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63956-2

  • Online ISBN: 978-3-642-59379-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics