Skip to main content

The Standard Model Symmetry Breaking Sector

  • Chapter
Effective Lagrangians for the Standard Model

Part of the book series: Texts and Monographs in Physics ((TMP))

  • 479 Accesses

Abstract

In this chapter we are going to review the mass problem in the standard model (SM) and how it is solved by means of an spontaneous symmetry breaking. This mechanism also admits a phenomenological description in terms of an electroweak effective Lagrangian, that is built based on just a few firmly established experimental facts. We will see that its applicability is mainly restricted to an strongly interacting symmetry breaking sector (SBS). In that context, it is particularly useful the so called equivalence theorem (ET). We will review in detail its derivation and applicability. Finally, we also present several applications to the Large Electron Positron collider (LEP) and the Large Hadron Collider (LHC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321 P.W. Higgs, Phys. Rev. Lett. 13 (1964) 508; Phys. Rev. 145 (1966) 145

    Article  MathSciNet  ADS  Google Scholar 

  2. P.W. Anderson, Phys. Rev. 130 (1963) 439

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. G. t’Hooft, Nucl. Phys. B35 (1971) 167

    ADS  Google Scholar 

  4. J. Goldstone, Nuovo Cimento 19 (1961) 154 J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127 (1962) 965

    Article  MathSciNet  MATH  Google Scholar 

  5. S.L. Glashow, Nucl. Phys. 22 (1961) 579 S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264 A. Salam, Proc. 8th Nobel Symp., ed. N. Svartholm, p. 367, Stockholm, Almqvist and Wiksells (1968)

    Article  Google Scholar 

  6. Y.A. Golfand and E.P. Likhtman, JETP Lett. 13 (1971) 323 D.V. Volkov and V.P. Akulov, Phys. Lett. B46 (1973) 109 J. Wess and B. Zumino, Nucl. Phys. B70 (1974) 39

    Google Scholar 

  7. S. Weinberg, Phys. Rev. D19 (1979) 1277 S. Dimopoulos and L. Susskind, Nucl. Phys. B155 (1979) 237 E. Farhi and L. Susskind, Phys. Rep. 74 (1981) 277

    ADS  Google Scholar 

  8. Y. Nambu, Proceedings of the 1988 International Workshop on New Trends in Strong Coupling Gauge Theories, Nagoya, 1988, editors M. Bando, T. Muta and K. Yamawaki, World Scientific, Singapur, 1989, p.3. Y. Nambu, Proceedings of the 1989 Workshop on Dynamical Symmetry Breaking, Nagoya, 1989, editors T. Muta and K. Yamawaki, Nagoya University, Nagoya, 1990, p.1. V.A. Miransky, M. Tanabashi and K. Yamawaki, Mod. Phys. Lett. A4 (1989)1089; Phys. Lett. B211 (1989) 177 W.J. Marciano, Phys. Rev. Lett. 62 (1989) 2793 W. A. Bardeen, C.T. Hill and M. Lindner, Phys. Rev. D41 (1990) 1647 V.A. Miransky, Int. J. Mod. Phys. A6 (1991) 1641

    Google Scholar 

  9. P. Sikivie et al., Nucl. Phys. B173 (1980) 189 M.S. Chanowitz, M. Golden and H. Georgi, Phys. Rev. D36 (1987) 1490

    Article  ADS  Google Scholar 

  10. M.S. Chanowitz, M. Golden and H. Georgi Phys. Rev. Lett. 57 (1986) 2344

    Article  ADS  Google Scholar 

  11. T. Appelquist and C. Bernard, Phys. Rev. D22 (1980) 200

    ADS  Google Scholar 

  12. A. Longhitano, Phys. Rev. D22 (1980) 166; Nucl. Phys. B188 (1981) 118 T. Appelquist and G. Wu, Phys. Rev. D48 (1993) 3235

    ADS  Google Scholar 

  13. M.J. Herrero and E. Ruiz Morales, Nucl. Phys. B418 (1994) 431; Nucl. Phys. B437 (1995) 319

    Article  ADS  Google Scholar 

  14. B. Holdom and J. Terning, Phys. Lett. B247 (1990) 88 A. Dobado, D. Espriu and M.J. Herrero, Phys. Lett. B255 (1991) 405 M. Golden and L. Randall, Nucl. Phys. B361 (1991) 3

    ADS  Google Scholar 

  15. M. Bohm, H. Spiesberger and W. Hollik, Fortschr. Phys. 34 (1986) 687

    Google Scholar 

  16. W.J. Marciano and A. Sirlin, Phys. Rev. D22 (1980) 2697

    ADS  Google Scholar 

  17. K. Hagiwara, R.D. Peccei and D. Zeppenfeld, Nucl. Phys. B282 (1987) 253

    Google Scholar 

  18. S. Dawson, Nucl. Phys. B249 (1985) 42

    Article  ADS  Google Scholar 

  19. C. Weizsäcker and E.J. Williams, Z. Phys. 88 (1934) 612

    Article  ADS  Google Scholar 

  20. E.W.N. Glover and J.J. Van deer Bij, Nucl. Phys. B321 (1989) 561

    Article  ADS  Google Scholar 

  21. A. Dobado, M.J. Herrero, J.R. Peláez, E. Ruiz Morales and M.T. Urdiales Phys. Lett. B352 (1995) 400 A. Dobado and M. Urdiales. Z. Phys. C71 (1996) 659

    ADS  Google Scholar 

  22. J.M. Cornwall, D.N. Levin and G. Tiktopoulus, Phys. Rev. D10 (1974) 1145 C.E. Vayonakis, Lett. Nuovo Cimento 17 (1976) 383

    ADS  Google Scholar 

  23. C. Becchi, A. Rouet and R. Stora, Comm. Math. Phys. 42 (1975) 127

    Article  MathSciNet  ADS  Google Scholar 

  24. M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. B261 (1985) 379 G.K. Gounaris, R. Kogerler and H. Neufeld, Phys. Rev. D34 (1986) 3257

    Article  ADS  Google Scholar 

  25. Y.P. Yao and O.P. Yuan, Phys. Rev. D38 (1988) 2237 J. Bagger and C. Schmidt, Phys. Rev. D41 (1990) 264 H.J. He, Y.P. Kuang and X. Li, Phys. Rev. Lett. 69 (1992) 2619

    ADS  Google Scholar 

  26. H.J. He, Y.P. Kuang and X. Li, Phys. Lett. B329 (1994) 278 A. Dobado and J.R. Peláez, Phys. Lett. B329 (1994) 469; Nucl. Phys. B425 (1994) 110

    ADS  Google Scholar 

  27. D. Espriu and J. Matias, Phys. Rev. D52 (1995) 6530

    ADS  Google Scholar 

  28. A. Dobado and M.J. Herrero, Phys. Lett. B228 (1989) 495; B233 (1989) 505 J.F. Donoghue and C. Ramirez, Phys. Lett. B234 (1990) 361

    ADS  Google Scholar 

  29. A. Dobado, M.J. Herrero and J. Terrón, Z. Phys. C50 (1991) 205 and 465

    Google Scholar 

  30. B.W. Lee, C. Quigg and H. Thacker, Phys. Rev. D16 (1977) K. Hikasa and K. Igi, Phys. Rev. D48 (1993) 3055

    Google Scholar 

  31. G. Valencia and S. Willenbrock, Phys. Rev. D46 (1992) 2247

    ADS  Google Scholar 

  32. S. Dawson and S. Willenbrok, Phys. Rev. Lett. 62 (1989) 1232 M.J.G. Veltman and F.J. Yndurain, Nucl. Phys. B325 (1989) 1

    Article  ADS  Google Scholar 

  33. R. Casalbuoni, D. Dominici and R. Gatto, Phys. Lett. B147 (1984) 419 M.B. Einhorn, Nuc. Phys. B246 (1984) 75

    ADS  Google Scholar 

  34. A. Dobado, J. Morales, J.R. Peláez and M. Urdiales, Phys. Lett. B387 (1996) 563

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dobado, A., Gómez-Nicola, A., Maroto, A.L., Peláez, J.R. (1997). The Standard Model Symmetry Breaking Sector. In: Effective Lagrangians for the Standard Model. Texts and Monographs in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59191-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59191-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63889-3

  • Online ISBN: 978-3-642-59191-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics