Skip to main content

Molekulare Grundlagen erblicher Netzhautdegenerationen: Retinitis pigmentosa, Zapfen- und Makuladystrophien

  • Chapter
Monogen bedingte Erbkrankheiten 2

Part of the book series: Handbuch der Molekularen Medizin ((HDBMOLEK,volume 7))

  • 97 Accesses

Zusammenfassung

In diesem Beitrag werden die Fortschritte der letzten Jahre auf dem Gebiet der molekulargenetischen Aufklßrung hereditßrer Netzhautdystrophien (im engeren und weiteren Sinn) zusammengefasst. Hierzu soll zunßchst eine kurze Einführung in die Anatomie und Physiologie der Netzhaut sowie die grundlegenden Strategien gegeben werden, die bis heute zur Identifizierung der entsprechenden Krankheitsgene geführt haben. Die einzelnen Krankheitsgene werden im Detail beschrieben und, soweit bekannt, die molekularpathologischen Mechanismen erlßutert. Mit wachsender Kenntnis der genetischen Grundlagen nimmt auch unser Wissen über die normalen physiologischen Vorgßnge im menschlichen Netzhaut-Aderhaut-Komplex zu. Damit verknüpft sich die Hoffnung, dass in absehbarer Zeit wirkungsvolle Therapieansßtze ausgearbeitet werden können, die die Entwicklung bzw. das Fortschreiten von visusmindernden Komplikationen entscheidend beeinflussen können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Al-Maghtheh M., Inglehearn C.F., Keen T.J. et al. (1994) Identification of a sixth locus for autosomal dominant retinitis pigmentosa on chromosome 19. Hum Mol Genet 3:351–354

    PubMed  CAS  Google Scholar 

  • Al-Maghtheh M., Vithana E., Tarttelin E. et al. (1996) Evidence for a major retinitis pigmentosa locus on 19q13.4 (RP11), and association with a unique bimodal expressivity phenotype. Am J Hum Genet 59:864–871

    PubMed  CAS  Google Scholar 

  • Allikmets R., Shroyer N.F., Singh N. et al. (1997a) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–1807

    PubMed  CAS  Google Scholar 

  • Allikmets R., Singh N., Sun H. et al. (1997b) A photoreceptor cell specific ATP binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246

    PubMed  CAS  Google Scholar 

  • Anand-Apte B., Pepper M.S., Voest E. et al. (1997) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest Ophthalmol Vis Sci 38:817–823

    PubMed  CAS  Google Scholar 

  • Apte S.S., Mattei M.G., Olsen B.R. (1994) Cloning of the cDNA encoding human tissue inhibitor of metalloproteinases-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22. Genomics 19:86–90

    PubMed  CAS  Google Scholar 

  • Balciuniene J., Johansson K., Sandgren O., Wachtmeister L., Holmgren G., Forsman K. (1995) A gene for autosomal dominant progressive cone dystrophy (CORDS) maps to chromosome 17p12-p13. Genomics 30:281–286

    PubMed  CAS  Google Scholar 

  • Banerjee P., Kleyn P.W., Knowles J.A. et al. (1998) TULP1 mutation in two extended Dominican kindreds with autosomal recessive retinitis pigmentosa. Nat Genet 18:177–179

    PubMed  CAS  Google Scholar 

  • Bartley J., Gies C., Jacobson D. (1989) Cone dystrophy (X-linked) (COD1) maps between DXS7 (L1.28) and DXS206 (XJl.l) and is linked to DXS84 (754). Cytogenet Cell Genet 51:959

    Google Scholar 

  • Bascom R.A., Manara S., Collins L., Molday R.S., Kalnins V.I., Mclnnes R.R. (1992) Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies. Neuron 8:1171–1184

    PubMed  CAS  Google Scholar 

  • Baumgartner S., Hofmann K., Chiquet-Ehrismann R., Bucher P. (1998) The discoidin domain family revisited: new members from prokaryotes and a homology-based fold prediction. Protein Sci 7:1626–1631

    PubMed  CAS  Google Scholar 

  • Bayes M., Goldaracena B., Martinez-Mir A. et al. (1998) A new autosomal recessive retinitis pigmentosa locus maps on chromosome 2q31-q33. J Med Genet 35:141–145

    PubMed  CAS  Google Scholar 

  • Benomar A., Krols L., Stevanin G. et al. (1995) The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromsome 3p12-p21.1. Nat Genet 10:84–88

    PubMed  CAS  Google Scholar 

  • Berson E.L., Howard J. (1971) Temporal aspects of the electroretinogram in sector retinitis pigmentosa. Arch Ophthalmol 86:653–665

    PubMed  CAS  Google Scholar 

  • Berson E.L., Sandberg M.A., Rosner B., Birch D.G., Hanson A.H. (1985) Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol 99:240–251

    PubMed  CAS  Google Scholar 

  • Berson E.L., Rosner B., Sandberg M.A., Dryja T.P. (1991 a) Ocular findings in patients with autosomal dominant retinitis pigmentosa and a rhodopsin gene defect (pro-23-his). Arch Ophthalmol 109:92–101

    PubMed  CAS  Google Scholar 

  • Berson E.L., Rosner B., Sandberg M.A., Weigel-DiFranco C., Dryja T.P. (1991 b) Ocular findings in patients with autosomal dominant retinitis pigmentosa and rhodopsin, proline-347-leu eine. Am J Ophthalmol 111:614–623

    PubMed  CAS  Google Scholar 

  • Berson E.L., Rosner B., Sandberg M.A. et al. (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111:761–727

    PubMed  CAS  Google Scholar 

  • Bessant D.A.R., Payne A.M., Mitton K.P. et al. (1999) A mutation in NRL is assoeiated with autosomal dominant retinitis pigmentosa. Nat Genet 21:355–356

    PubMed  CAS  Google Scholar 

  • Bundey S., Crews S.J. (1984) A study of retinitis pigmentosa in the city of Birmingham. I. Prevalence. J Med Genet 21:417–420

    PubMed  CAS  Google Scholar 

  • Bunker C.H., Berson E.L., Bromley W.C. (1984) Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 97:357–365

    PubMed  CAS  Google Scholar 

  • Casey D. (1995) Genome project finishes fifth year ahead of schedule. Hum Genome News 7:1–9

    Google Scholar 

  • Chen S.M., Wang Q.L., Nie Z.Q. et al. (1997) Crx, a novel Otxlike paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19: 1017–1030

    PubMed  CAS  Google Scholar 

  • Cheng T., Peachey N.S., Li S. et al. (1997) The effect of peripherin/rds haploinsuffieiency on rod and cone photoreceptors. J Neurosci 17:8118–8128

    PubMed  CAS  Google Scholar 

  • Cohen A.I. (1983) Some cytological and initial biochemical observations on photoreceptors in retinas of rds mice. Invest Ophthalmol Vis Sci 24:832–843

    PubMed  CAS  Google Scholar 

  • Collins F.S. (1995) Positional cloning moves from perditional to traditional. Nat Genet 9:347–350

    PubMed  CAS  Google Scholar 

  • Condon G.P., Brownstein S., Wang N., Kearns A.F., Ewing C.C. (1986) Congenital hereditary (juvenile X-linked) retinoschisis: histological and ultrastructural findings in three eyes. Arch Ophthalmol 104:576–583

    PubMed  CAS  Google Scholar 

  • Cremers F.P.M., Pol D.J.R. van de, Driel M. van et al. (1998) Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet 7:355–362

    PubMed  CAS  Google Scholar 

  • David G., Abbas N., Stevanin G. et al. (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65–70

    PubMed  CAS  Google Scholar 

  • Demant P., Ivanyi D., Nie R. van (1979) The map position of the rds gene on the 17th chromosome of the mouse. Tissue Antigens 13:53–55

    PubMed  CAS  Google Scholar 

  • Deutman A.F. (1971) The hereditary dystrophies of the posterior pole of the eye. Van Gorcum, Assen

    Google Scholar 

  • Deutman A.F. (1994) Macular dystrophies. In: Ryan S.J., Ogden T.E. (eds) Retina, 2nd edn. Mosby, St Louis, pp 1186–1240

    Google Scholar 

  • Dietz H.C., Cutting G.R., Pyeritz R.E. et al. (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339

    PubMed  CAS  Google Scholar 

  • Dizhoor A.M., Hurley J.B. (1996) Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2+-induced „activator-to-inhibitor” transition. J Biol Chem 271: 19346–50

    PubMed  CAS  Google Scholar 

  • Donders F.C. (1855) Beitrßge zur pathologischen Anatomie des Auges. Graefes Arch Clin Exp Ophthalmol 1:106–118

    Google Scholar 

  • Dryja T.P., McGee T.L., Reichel E. et al. (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343:364–366

    PubMed  CAS  Google Scholar 

  • Dryja T.P., Finn J.T., Peng Y-W., McGee T.L., Berson E.L., Yau K.W. (1995) Mutations in the gene encoding the a subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci USA 92:10177–10181

    CAS  Google Scholar 

  • Dryja T.P., Hahn L.B., Kajiwara K., Berson E.L. (1997) Dominant and digenic mutations in the peripherin/RDS and ROMI genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci 38:1972–1982

    PubMed  CAS  Google Scholar 

  • Dryja T.P., C.E. Briggs, E.L. Berson et al. (1998) ABCR gene and age-related macular degeneration. Science 279:1107

    Google Scholar 

  • Evans K., Fryer A., Inglehearn C. (1994) Genetic linkage of cone-rod retinal dystrophy to chromosome 19q and evidence for segregation distortion. Nat Genet 6:210–213

    PubMed  CAS  Google Scholar 

  • Fariss R.N., Apte S.S., Olsen B.R., Iwata K., Milam A.H. (1997) Tissue inhibitor of metalloproteinases-3 is a component of Bruch’s membrane of the eye. Am J Pathol 150:323–328

    PubMed  CAS  Google Scholar 

  • Farrar G.J., Jordan S.A., Kenna P. et al. (1991 a) Autosomal dominant retinitis pigmentosa: localization of a disease gene (RP6) to the short arm of chromosome 6. Genomics 11:870–874

    PubMed  CAS  Google Scholar 

  • Farrar G.J., Kenna P., Jordan S.A. et al. (1991 b) A three-basepair deletion in the peripherin-RDS gene in one form of retinitis pigmentosa. Nature 354:478–480

    PubMed  CAS  Google Scholar 

  • Finckh U., Xu S., Kumaramanickavel G. et al. (1998) Homozygosity mapping of autosomal recessive retinitis pigmentosa locus (RP22) on chromosome 16p12.1-p12.3. Genomics 48:341–345

    PubMed  CAS  Google Scholar 

  • Fishman G.A., Alexander, K.R., Anderson R.J. (1985) Autosomal dominant retinitis pigmentosa: a method of classification. Arch Ophthalmol 103:366–374

    PubMed  CAS  Google Scholar 

  • Forsman K., Graff C., Nordstrom S. et al. (1992) The gene for Best’s macular dystrophy is located at 11q13 in a Swedish family. Clin Genet 42:156–159

    PubMed  CAS  Google Scholar 

  • Freund C.L., Gregory-Evans C.Y., Furukawa T. et al. (1997) Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91:543–553

    PubMed  CAS  Google Scholar 

  • Freund C.L., Wang Q.L., Chen S. et al. (1998) De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. Nat Genet 18:311–312

    PubMed  CAS  Google Scholar 

  • Fulton A.B., Hansen R.M. (1988) The relations of rhodopsin and scotopic retinal sensitivity in sector retinitis pigmentosa. Am J Ophthalmol 105:132–140

    PubMed  CAS  Google Scholar 

  • Furukawa T., Morrow E.M., Cepko C.L. (1997) CRX, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91:531–541

    PubMed  CAS  Google Scholar 

  • Gal A., Apfelstedt-SyHa E., Janecke A.R., Zrenner E. (1997) Rhodopsin mutations in inherited retinal dystrophies and dysfunctions. Prog Ret Eye Res 16:51–79

    CAS  Google Scholar 

  • Gehrig A.E., White K., Lorenz B., Andrassi M., Clemens S., Weber B.H.F. (1999) Assessment of RSI in X-linked juvenile retinoschisis and sporadic senile retinoschisis. Clin Genet in press

    Google Scholar 

  • George N.D., Yates J.R., Moore A.T. (1996) Clinical features in affected males with X-linked retinoschisis. Arch Ophthalmol 114:274–280

    PubMed  CAS  Google Scholar 

  • Gerber S., Rozet J.M., Bonneau D. et al. (1985) A gene for lateonset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13. Am J Hum Genet 56:396–399

    Google Scholar 

  • Gerber S., Rozet J.M., Pol T.J.R. van de et al. (1998) Complete exon-intron structure of the retina-specific ATP binding transporter gene (ABCR) aHows the identification of novel mutations underlying Stargardt disease. Genomics 48:139–142

    PubMed  CAS  Google Scholar 

  • Goldberg A.F., Molday R.S. (1996) Subunit composition of the peripherin/rds-rom-1 disk rim complex from rod photoreceptors: hydrodynamic evidence for a tetrameric quaternary structure. Biochemistry 35:6144–6149

    PubMed  CAS  Google Scholar 

  • Gorczyca W.A., Polans A.S., Surgucheva I.G. et al. (1995) Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem 270:22029–22036

    PubMed  CAS  Google Scholar 

  • Gouw L.G., Kaplan C.D., Haines J.H. et al. (1995) Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromomsome 3p. Nat Genet 10:89–93

    PubMed  CAS  Google Scholar 

  • Graff C., Forsman K., Larsson C. et al. (1994) Fine mapping of Best’s macular dystrophy localizes the gene in close proximity to but distinct from the D11S480/ROM1 loci. Genomics 24:425–434

    PubMed  CAS  Google Scholar 

  • Graff C., Eriksson A., Forsman K. et al. (1997) Refined genetic localization of the Best disease gene in 11q13 and physical mapping of linked markers on radiation hybrids. Hum Genet 101:263–270

    PubMed  CAS  Google Scholar 

  • Greene J., Wang M.S., Liu Y., Raymond L.A., Rosen C., Shi Y. (1996) Molecular cloning and characterization of human tissue inhibitor of metalloproteinase-4. J Biol Chem 271:30375–30380

    PubMed  CAS  Google Scholar 

  • Gregory-Evans K., Bhattacharya S.S. (1998) Genetic blindness: current concepts in the pathogenesis of human outer retinal dystrophies. Trends Genet 14:103–108

    PubMed  CAS  Google Scholar 

  • Gregory C.Y., Evans K., Wijesuriya S.D. et al. (1996) The gene responsible for autosomal dominant Doyne’s honeycomb retinal dystrophy (DHRD) maps to chromosome 2p16. Hum Mol Genet 5:1055–1059

    PubMed  CAS  Google Scholar 

  • Gu S.M., Thompson D.A., Srikumari C.R. et al. (1997) Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet 17: 194–197

    PubMed  CAS  Google Scholar 

  • Gu S.M., Lennon A., Li Y. et al. (1998) Tubby-like protein-1 mutations in autosomal recessive retinitis pigmentosa. Lancet 351:1103–1104

    PubMed  CAS  Google Scholar 

  • Gu S.M., Kumaramanickavel G., Srikumari C.R., Denton M.J., Gal A. (1999) Autosomal recessive retinitis pigmentosa 10-cus RP28 maps between D2S1337 and D2S286 on chromosome 2p11-p15 in an Indian family. J Med Genet 36: im Druck

    Google Scholar 

  • Hagstrom S.A., North M.A., Nishina P.L., Berson E.L., Dryja T.P. (1998) Recessive mutations in the gene encoding the tubby-like protein TULPI in patients with retinitis pigmentosa. Nat Genet 18:174–176

    PubMed  CAS  Google Scholar 

  • Harding A.E. (1982) The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the the Drew family of Walworth. Brain 105:1–28

    PubMed  CAS  Google Scholar 

  • Hawkins R.K., Jansen H.G., Sanyal S. (1985) Development and degeneration of retina in rds mutant mice: photoreceptor abnormalities in the heterozygotes. Exp Eye Res 41:701–720

    PubMed  CAS  Google Scholar 

  • Heckenlively J.R. (1988) Retinitis pigmentosa. Lippincott, Philadelphia

    Google Scholar 

  • Heckenlively J.R., Rodriguez J.A., Daiger S.P. (1991) Autosomal dominant sectoral retinitis pigmentosa; two families with transversion mutation in codon 23 of rhodopsin. Arch Ophthalmol 109:84–91

    PubMed  CAS  Google Scholar 

  • Heon E., Piguet B., Munier F. (1996) Linkage of autosomal dominant radial drusen (Malattia leventinese) to chromosome 2p16-21. Arch Ophthalmol 114:193–198

    PubMed  CAS  Google Scholar 

  • Higgins C.F. (1992) ABC transporters: from microorganisms to man. Annu Rev cell Biol 8:67–113

    PubMed  CAS  Google Scholar 

  • Hotta Y., Fujiki K., Hayakawa M. et al. (1998) Japanese juvenile retinoschisis is caused by mutations of the XLRS1 gene. Hum Genet 103:142–144

    PubMed  CAS  Google Scholar 

  • Huang S.H., Pittler S.J., Huang X., Oliveira L., Berson E.L., Dryja T.P. (1995) Mutations in the gene encoding the a subunit of rod cGMP phosphodiesterase in patients with autosomal recessive retinitis pigmentosa. Nat Genet 11:468–471

    PubMed  CAS  Google Scholar 

  • Illing M., Molday L.L., Molday R.S. (1997) The 220 kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 272:10.303–10.310

    Google Scholar 

  • Ives E.J., Ewing C.C., Innes R. (1970) X linked juvenile retinoschisis and Xg linkage in five families. Am J Hum Genet 22:17A–18A

    Google Scholar 

  • Jacobson S.G., Cideciyan A.V., Regunath G. et al. (1995) Night blindness in Sorsby’s fundus dystrophy reversed by vitamin A. Nat Genet 11:27–32

    PubMed  CAS  Google Scholar 

  • Jacobson S.G., Cideciyan A.V., Huang Y. et al. (1998) Retinal degenerations with truncation mutations in the cone-rod homeobox (CRX) gene. Invest Ophthalmol Vis Sci 39:2417–2426

    PubMed  CAS  Google Scholar 

  • Jimenez-Sierra J.M., Ogden T.E., Boemel G.B. van (1989) Inherited retinal diseases. A diagnostic guide. Mosby, St Louis

    Google Scholar 

  • Johansson J., Forsgren L., Sandgren O. et al. (1998) Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum Mol Genet 7:171–176

    PubMed  CAS  Google Scholar 

  • Jordan S.A., Farrar G.J., Kenna P. et al. (1993) Localization of an autosomal dominant retinitis pigmentosa gene to chromosome 7q. Nat Genet 4:54–57

    PubMed  CAS  Google Scholar 

  • Kajiwara K., Hahn L.B., Mukai S., Travis G.H., Berson E.L., Dryja T.P. (1991) Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature 354:480–483

    PubMed  CAS  Google Scholar 

  • Kajiwara K., Berson E.L., Drya T.P. (1994) Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loei. Science 264:1604–1608

    PubMed  CAS  Google Scholar 

  • Kaplan J., Gerber S., Larget Piet D et al. (1993) A gene for Stargardt’s disease (fundus tlavimaculatus) maps to the short arm of chromosome 1. Nat Genet 5:308–311

    Google Scholar 

  • Kaushal S., Khorana G. (1994) Structure and function in rhodopsin 7. Point mutation assoeiated with autosomal dominant retinitis pigmentosa. Biochemistry 33:6121–6128

    PubMed  CAS  Google Scholar 

  • Kelsell R.E., Godley B.F., Evans K. et al. (1995) Localization of the gene for progressive bifocal chorioretinal atrophy (PBCRA) to chromosome 6q. Hum Mol Genet 4:1653–1656

    PubMed  CAS  Google Scholar 

  • Kelsell R.E., Evens K., Gregory C.Y., Moore A.T., Bird A.C., Hunt D.M. (1997) Localisation of a gene for dominant cone rod dystrophy (CORD6) to chromosome 17p. Hum Mol Genet 6:597–600

    PubMed  CAS  Google Scholar 

  • Kelsell R.E., Gregory-Evans G.K., Gregory-Evans C.Y. et al. (1998a) Localization of a gene (CORD7) for a dominant cone-rod dystrophy to chromosome 6q. Am J Hum Genet 63:274–279

    PubMed  CAS  Google Scholar 

  • Kelsell R.E., Gregory-Evans K., Payne A.M. et al. (1998b) Mutations in the retinal guanylate cyelase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7:1179–1184

    PubMed  CAS  Google Scholar 

  • Kenna P., Mansergh F., Millington-Ward S. et al. (1997) Clinical and molecular genetic characterisation of a family segregating autosomal dominant retinitis pigmentosa and sensorineural deafness. Br J Ophthalmol 81:207–213

    PubMed  CAS  Google Scholar 

  • Klaver C.C.W., Assink J.M., Bergen A.A.B., Duijn C.M. van (1998) ABCR gene and age-re1ated macular degeneration. Science 279:1107

    Google Scholar 

  • Klein M.L., Schultz D.W., Edwards A. et al. (1998) Age-related macular degeneration. Clinical features in a large family and linkage to chromosome 1q. Arch Ophthalmol 116: 1082–1088

    PubMed  CAS  Google Scholar 

  • Klystra J.A., Aylsworth A.S. (1993) Cone-rod retinal dystrophy in a patient with neurofibromatosis type 1. Can J Ophthalmol 28:79–80

    Google Scholar 

  • Kohl S., Christ-Adler M., Apfelstedt-Sylla E. et al. (1997) RDSI peripherin gene mutations are frequent causes of central retinal dystrophies. J Med Genet 34:620–626

    PubMed  CAS  Google Scholar 

  • Kohl S., Giddings I., Besch D. et al. (1998) The role of the peripherin/RDS gene in retinal dystrophies. Acta Anat 162:75–84

    PubMed  CAS  Google Scholar 

  • Kremer H., Pinckers A., Helm B. van den, Deutman A.F., Ropers H.H., Mariman E.C.M. (1994) Localization of the gene for dominant cystoid macular dystrophy on chromosome 7p. Hum Mol Genet 3:299–302

    PubMed  CAS  Google Scholar 

  • Krey H.J., Grunau G, Brßuer H (1986) Exempla ophthalmologica. Albert Roussel GmbH, Wiesbaden

    Google Scholar 

  • Kumaramanickavel G., Maw M., Denton M.J. et al. (1994) Missense rhodopsin mutation in a family with recessive RP. Nat Genet 8:10–11

    PubMed  CAS  Google Scholar 

  • Laura R.P., Dizhoor A.M., Hurley J.B. (1996) The membrane guanylyl cyelase, retinal guanylyl cyelase-1, is activated through its intracellular domain. J Biol Chem 271:11646–11651

    PubMed  CAS  Google Scholar 

  • Li Z-Y., Jacobson S.G., Milam A.H. (1994) Autosomal dominant retinitis pigementosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry. Exp Eye Res 58:397–408

    PubMed  CAS  Google Scholar 

  • Lotery A.J., Hughes A.E., Silvestri G. et al. (1996) Localization of a gene for central areolar choroidal dystrophy to chromosome 17p. Invest Ophthalmol Vis Sci 37:1124

    Google Scholar 

  • Lunkes A., Mandel J.L. (1998) A cellular model that recapitulates major pathogenic steps of Huntington’s disease. Hum Mol Genet 7:1355–1361

    PubMed  CAS  Google Scholar 

  • Ma J., Norton J.C., Allen A.C. et al. (1995) Retinal degeneration slow (rds) in mouse results from simple insertion of a t haplotype-specific element into pro tein-coding exon H. Genomics 28:212–219

    PubMed  CAS  Google Scholar 

  • Mansergh F.C., Millington-Ward S., Kennan A. et al. (1999) Retinitis pigmentosa and progressive sensorineural hearing loss caused by a C12.258A mutation in the mitochondrial MTTS2 gene. Am J Hum Genet 64:971–985

    PubMed  CAS  Google Scholar 

  • Marmor M.F., Aguirre G., Arden G.B. et al. (1983) Retinitis pigmentosa, a symposium on terminology and methods of examination. Ophthalmology 90:126–131

    Google Scholar 

  • Marlhens F., Bareil C., Griffoin J.M. et al. (1997) Mutations in RPE65 cause Leber’s congenital amaurosis. Nat Genet 17:139–141

    PubMed  CAS  Google Scholar 

  • Marquardt A., Stöhr H., Passmore L.A. et al. (1998) Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 7:1517–1525

    PubMed  CAS  Google Scholar 

  • Martínez-Mir A., Bayes M., Vilageliu L. et al. (1997) A new 10-cus for autosomal recessive retinitis pigmentosa (RP19) maps to Ip13-1p21. Genomics 40:142–146

    PubMed  Google Scholar 

  • Martinez-Mir A., Paloma E., Allikmets R. et al. (1998) Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 18:11–12

    PubMed  CAS  Google Scholar 

  • Massof R.W., Finkelstein D. (1981) Two forms of ausosomal dominant primary retinitis pigmentosa. Doc Ophthalmol 51:289–346

    PubMed  CAS  Google Scholar 

  • Massof R.W., Finkelstein D. (1987) A two-stage hypothesis for the natural course of retinitis pigmentosa. In: Zrenner E, Krastel H., Groeble H-H. (eds) Advances in the Biosciences, vol 62. Pergamon Press, Oxford New York, pp 29–58

    Google Scholar 

  • Matrisian L.M. (1990) Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 6:121–125

    PubMed  CAS  Google Scholar 

  • Maw M.A., Kennedy B., Knight A. et al. (1997) Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 17:198–200

    PubMed  CAS  Google Scholar 

  • McGuire R.E., Gannon A.M., Sullivan L.S., Rodriguez J.A., Daiger S.P. (1995) Evidence for a major gene (RPlO) for autosomai dominant retinitis pigmentosa on chromosome 7q: linkage mapping in a second, unrelated family. Hum Genet 95:71–74

    PubMed  CAS  Google Scholar 

  • McLaughlin M.E., Sandberg M.A., Berson E.L., Dryja T.P. (1993) Recessive mutations in the gene encoding the ß-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet 4: 130–134

    PubMed  CAS  Google Scholar 

  • McWilliam P., Farrar G.J., Kenna P. et al. (1989) Autosomal dominant retinitis pigmentosa (ADRP): localization of an ADRP gene to the long arm of chromosome 3. Genomics 5:619–622

    PubMed  CAS  Google Scholar 

  • Meindl A., Dry K., Herrmann K. et al. (1996) A gene (RPGR) with homology to the RCCI guanine nueleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet 13:35–42

    PubMed  CAS  Google Scholar 

  • Milln J.M., Martinez F., Vilela C., Beneyto M., Prieto F., Najera C. (1995) An autosomal dominant retinitis pigmentosa family with elose linkage to D7S480 on 7q. Hum Genet 96:216–218

    Google Scholar 

  • Mohamed Z., Bell C., Hammer H.M., Converse C.A., Esakowitz L., Haites N.E. (1996) Linkage of a medium sized Scottish autosomal dominant retinitis pigmentosa family to chromosome 7q. J Med Genet 33:714–715

    PubMed  CAS  Google Scholar 

  • Molday R.S. (1994) Peripherin/rds and rom-1: molecular properties and role in photoreceptor cell degeneration. Prog Ret Eye Res 13:271–299

    CAS  Google Scholar 

  • Molday R.S. (1998) Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 39:2493–2513

    Google Scholar 

  • Molday R.S., Hieks D., Molday L. (1987) Peripherin. A rimspecific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61

    PubMed  CAS  Google Scholar 

  • Moore A.T., Fitzke F., Iay M. et al. (1993) Autosomal dominant retinitis pigmentosa with apparent incomplete penetrance: a clinical, electrophysiologieal, psychophysieal, and molecular genetic study. Br J Ophthalmol 77:473–479

    PubMed  CAS  Google Scholar 

  • Morimura H., Fishman G.A., Grover S.A., Fulton A.B., Berson E.L., Dryja T.P. (l998) Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. Proc Natl Acad Sci USA 95:3088–3093

    Google Scholar 

  • Moses M.A., Sudhalter I., Langer R. (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248:1408–1410

    PubMed  CAS  Google Scholar 

  • Nakazawa M., Wada Y., Tamai M. (1998) Arrestin gene mutations in autosomal recessive retinitis pigmentosa. Arch Ophthalmol 116:498–501

    PubMed  CAS  Google Scholar 

  • Nasonkin I., Illing M., Koehler M.R. et al. (1998) Mapping of the rod photoreceptor ABC transporter (ABCR) to 1p21-p22.1 and identification of novel mutations in Stargardt’s disease. Hum Genet 102:21–26

    PubMed  CAS  Google Scholar 

  • North M.A., Naggert I.K., Yan Y., Noben-Trauth K., Trauth K., Nishina P.M. (1997) Molecular characterisation of TUB, TULP1, and TULP2 members of the novel tubby gene family and their possible relation to ocular diseases. Proc Natl Acad Sci USA 94:3128–3133

    CAS  Google Scholar 

  • Pagon R. (l988) Retinitis pigmentosa. Surv Ophthalmol 33:137–177

    Google Scholar 

  • Papermaster D.S., Windle I. (1995) Death at an early age. Apoptosis in inherited retinal degeneration. Invest Ophthalmol Vis Sci 36:977–983

    PubMed  CAS  Google Scholar 

  • Payne A.M., Downes S.M., Bessant D.A.R. et al. (1998) A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 7:273–277

    PubMed  CAS  Google Scholar 

  • Perrault I., Rozet I.M., Calvas P. et al. (1996) Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet 14:461–464

    PubMed  CAS  Google Scholar 

  • Perrault I., Rozet J.M., Gerber S. et al. (1998) A retGC-1 mutation in autosomal dominant cone-rod dystrophy. Am J Hum Genet 63:651–654

    PubMed  CAS  Google Scholar 

  • Petrukhin K., Koisti M.I., Bakall B. et al. (1998) Identification of the gene responsible for Best macular dystrophy. Nat Genet 19:241–247

    PubMed  CAS  Google Scholar 

  • Pierce E.A., Quinn T., Meehan T., McGee T.L., Berson E.L., Dryja T.P. (l999) Mutations in a gene encoding a new oxygenregulated photoreceptor protein cause dominant retinitis pigmentosa. Nat Genet 22:248–254

    Google Scholar 

  • Retinoschisis Consortium (1998) Functional implications of the spectrum of mutations found in 234 cases with Xlinked juvenile retinoschisis (XLRS). Hum Mol Genet 7:1185–1192

    CAS  Google Scholar 

  • Rodriguez I.R., Mazuruk K., Jaworski C., Iwata F., Moreira E.F., Kaiser-Kupfer M.I. (1998) Novel mutations in the XLRS1 gene may be caused by early Okazaki fragment sequence replacement. Invest Ophthalmol Vis Sci 39:1736–1739

    PubMed  CAS  Google Scholar 

  • Rosenfeld P.J., Cowley G.S., McGee T.L., Sandberg M.A., Berson E.L., Dryja T.P. (1992) A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nat Genet 1:209–213

    PubMed  CAS  Google Scholar 

  • Rozet J.M., Gerber S., Ghazi I. et al. (1999) Mutations ofthe retinal specific ATP binding transporter gene (ABCR) in a single family segregating both autosomal recessive retinitis pigmentosa RP19 and Stargardt disease: evidence of Clinical heterogeneity at this locus. J Med Genet 36:447–451

    PubMed  CAS  Google Scholar 

  • Ruiz A., Borrego S., Marcos I., Antifiolo G. (1998) A major 10-cus for autosomal recessive retinitis pigmentosa on 6q, determined by homozygosity mapping of chromosomal regions that contain gamma-aminobutyrie acid-receptor clusters. Am J Hum Genet 62:1452–1459

    PubMed  CAS  Google Scholar 

  • Sandberg M.A., Weigel-DiFranco C., Drya T.P., Berson E.L. (1995) Clinical expression correlates with location of rhodopsin mutation in dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 36:1934–1942

    PubMed  CAS  Google Scholar 

  • Sauer G.S., Gehrig A., Warneke-Wittstock R. et al. (1997) Positional cloning of the gene assoeiated with X-linked juvenile retinoschisis. Nat Genet 17:164–170

    PubMed  CAS  Google Scholar 

  • Schwahn U., Lenzner S., Dong J. et al. (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19:327–332

    PubMed  CAS  Google Scholar 

  • Shroyer N.F., Lewis R.A., Allikmets R. et al. (1999) The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenie to multifactorial. Vision Res 39:2537–2544

    PubMed  CAS  Google Scholar 

  • Small K.W., Weber I.L., Roses A., Lennon F., Vance J.M., Perieak Vance M.A. (1992) North Carolina macular dystrophy is assigned to chromosome 6. Genomics 13:681–685

    Google Scholar 

  • Small K.W., Syrquin M., Mullen L., Gehrs K. (1996) Mapping of autosomal dominant cone degeneration to chromosome 17p. Am J Ophthalmol 121:13–18

    PubMed  CAS  Google Scholar 

  • Soest S. van, Born L.I. van den, Gal A. et al. (1994) Assignment of a gene for autosomal recessive retinitis pigmentosa (RP12) to chromosome 1q31-q32.1 in an inbred and Genetically heterogeneous disease population. Genomics 22:499–504

    PubMed  Google Scholar 

  • Soest S. van, Westerveld A., Iong P.T. de, Bleeker-Wagemakers E.M. (1999) Retinitis pigmentosa: defined from a molecular point of view. Surv Ophthalmol 43:321–334

    PubMed  Google Scholar 

  • Sohocki M.M., Sullivan L.S., Mintz-Hittner H.A. et al. (1998) A range of Clinical phenotypes assoeiated with mutations in CRX, a photoreceptor transcription-factor gene. Am J Hum Genet 63:1307–1315

    PubMed  CAS  Google Scholar 

  • Sokal I., Li N., Surgucheva I. et al. (1998) GCAP1 (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Molecular Cell 2:129–133

    PubMed  CAS  Google Scholar 

  • Steinmetz R.L., Polkinghorne P.C., Fitzke F.W., Kemp C.M., Bird A.C. (1992) Abnormal dark adaptation and rhodopsin kinetics in Sorsby’s fundus dystrophy. Invest Ophthalmol Vis Sci 33:1633–1636

    PubMed  CAS  Google Scholar 

  • Stockman A., Sharpe S.T. (1999) Cone spectral sensitivities and color matching. In: Gegenfurther K., Sharpe L.T. (eds) Color vision: from genes to perception. Cambridge University Press, Cambridge, pp 51–85

    Google Scholar 

  • Stöhr H., Weber B.H.F. (1995) A recombination event excludes the ROM1 locus from the Best’s vitelliform macular dystrophy region. Hum Genet 95:219–222

    PubMed  Google Scholar 

  • Stone E.M., Niehols B.E., Streb L.M., Kimura A.E., Sheffield V.C. (1992) Genetic linkage of vitelliform macular degeneration (Best’s disease) to chromosome 11q13. Nat Genet 1:246–250

    PubMed  CAS  Google Scholar 

  • Stone E.M., Nichols B.E., Kimura A.E., Weingeist T.A., Drack A., Sheffield V.C. (1994) Clinical features of a Stargardt-like dominant progressive macular dystrophy with genetic linkage to chromosome 6q. Arch Ophthalmol 112:765–772

    PubMed  CAS  Google Scholar 

  • Stone E.M., Webster A.R., Vandenburgh K. et al. (1998) Allelic variation in ABCR assoeiated with Stargardt disease but not age-related macular degeneration. Nat Genet 20:328–329

    PubMed  CAS  Google Scholar 

  • Stone E.M., Lotery A.J., Munier F.l. et al. (1999) A single EFEMP1 mutation assoeiated with both Malattia leventinese and Doyne honeycomb retinal dystrophy. Nat Genet 22:199–202

    PubMed  CAS  Google Scholar 

  • Sullivan L.R., Heckenlively J.R., Bowne S.J. et al. (1999) Mutations in a novel retina-specific gene cause autosomal dominant retinitis pigmentosa. Nat Genet 22:255–259

    PubMed  CAS  Google Scholar 

  • Sun H., Nathans J. (1997) Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat Genet 17:15–16

    PubMed  Google Scholar 

  • Sun H., Molday R.S., Nathans J. (1999) Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem 274:8269–8281

    PubMed  CAS  Google Scholar 

  • Sung C-H., Schneider B.G., Agarwal N., Papermaster D.S., Nathans J. (1991) Functional heterogeneity of mutant rhodopsin responsible for autosomal dominant retinitis pigmentosa. Proc Nat Acad Sci USA 88:8840–8844

    CAS  Google Scholar 

  • Sung C-H., Davenport C.M., Nathans J. (1993) Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain. J Biol Chem 268:26645–26649

    PubMed  CAS  Google Scholar 

  • Sung C-H., Makino C., Baylor D., Nathans J. (1994) A rhodopsin gene responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J Neurosci 14:5818–5833

    PubMed  CAS  Google Scholar 

  • Sutter E.E., Tran D (1992) The field topography of ERG components in man-I. The photopic luminance response. Vision Res 32:433–446

    PubMed  CAS  Google Scholar 

  • Swain P.K., Chen S.M., Wang Q.L. et al. (1997) Mutations in the cone-rod homeobox gene are associated with the conerod dystrophy pho,toreceptor degeneration. Neuron 19:1329–1336

    PubMed  CAS  Google Scholar 

  • Tranebjaerg L., Sjo O, Warburg M. (1986) Retinal cone dysfunction and mental retardation assoeiated with a de novo balanced translocation 1,6(q44,q27). Ophthalmie Paediatr Genet 7:167–173

    CAS  Google Scholar 

  • Travis G.H., Brennan M.B., Danielson P.E. et al. (1989) Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds). Nature 338:70–73

    PubMed  CAS  Google Scholar 

  • Travis G.H., Christerson L., Danielson P.E. et al. (1991) The human retinal degeneration slow (RDS) gene: chromosome assignment and structure of the mRNA. Genomics 10:733–739

    PubMed  CAS  Google Scholar 

  • Ullerieh K., Deutman A.F., Alexandridis E., Witschel H. (1985) Heredodystrophien der Makula. In: Hammerstein W., Lisch W. (Hrsg) Ophthalmologische Genetik. Bücherei des Augenarztes, Bd 105. Enke, Stuttgart, S 231–253

    Google Scholar 

  • Van de Vosse E, Bergen A.A.B., Meershoek E.J. et al. (1996) An Xp22.1-p22.2 YAC contig encompassing the disease loei for RS, KFSD, CLS, HYP and RP15: refined localization of RS. Eur J Hum Genet 4:101–104

    PubMed  Google Scholar 

  • Van Nie R, Ivanyi D., Demant P. (1978) A new H-2-linked mutation, rds, causing retinal degeneration in the mouse. Tissue Antigens 12:106–108

    PubMed  Google Scholar 

  • Vranka J.A., Johnson E., Zhu X. et al. (1997) Discrete expression and distribution pattern of TIMP3 in the human retina and choroid. Curr Eye Res 16:102–110

    PubMed  CAS  Google Scholar 

  • Warburg M., Sjo O., Tranebjaerg L., Fledelius H.C. (1991) Deletion mapping of a retinal cone-rod dystrophy: assignment to 18q211. Am J Med Genet 39:288–293

    PubMed  CAS  Google Scholar 

  • Warneke-Wittstock R., Marquardt A., Gehrig A. et al. (1998) Transcript map of a 900 kb genomie region in Xp22.1-p22.2: identification of 12 novel genes. Genomics 51:59–67

    PubMed  CAS  Google Scholar 

  • Warren S.T. (1996) The expanding world of trinucleotide repeats. Science 271:1374–1375

    PubMed  CAS  Google Scholar 

  • Weber B.H.F., Vogt G., Pruett R.C., Stohr H., Felbor U. (1994a) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nat Genet 8:352–356

    PubMed  CAS  Google Scholar 

  • Weber B.H.F., Vogt G., Wolz W., Ives E.J., Ewing C.C. (1994b) Sorsby’s fundus dystrophy is Genetically linked to chromosome 22q13-qter. Nat Genet 7:158–161

    PubMed  CAS  Google Scholar 

  • Weleber R.G., Carr R.E., Murphy W.H., Sheffield V.C., Stone E.M. (1993). Phenotypie variation including retinitis pigmentosa, pattern dystrophy, and fundus flavimaculatus in a single family with a deletion of codon 153 or 154 of the peripherin/RDS gene. Arch Ophthalmol 111:1531–1542

    PubMed  CAS  Google Scholar 

  • Wells J., Wroblewski J., Keen J. et al. (1993) Mutations in the human retinal degeneration slow (RDS) gene can cause either retinitis pigmentosa or macular dystrophy. Nat Genet 3:213–218

    PubMed  CAS  Google Scholar 

  • Wieacker P., Davies K.E., Mevorah B., Ropers H.H. (1983) Linkage studies in a family with X-linked recessive ichthyosis employing a cloned DNA sequence from the distal short arm of the X chromosome. Hum Genet 63:113–116

    PubMed  CAS  Google Scholar 

  • Zhang K., Bither P.P., Park R., Donoso L.A., Seidman J.G., Seidman C.E. (1994) A dominant Stargardt’s macular dystrophy locus maps to chromosome 13q34. Arch Ophthalmol 112:759–764

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Apfelstedt-Sylla, E., Gal, A., Weber, B.H.F. (2000). Molekulare Grundlagen erblicher Netzhautdegenerationen: Retinitis pigmentosa, Zapfen- und Makuladystrophien. In: Ganten, D., Ruckpaul, K. (eds) Monogen bedingte Erbkrankheiten 2. Handbuch der Molekularen Medizin, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57044-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57044-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62996-9

  • Online ISBN: 978-3-642-57044-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics