Skip to main content

Hsp27 in the Nervous System: Expression in Pathophysiology and in the Aging Brain

  • Chapter
Small Stress Proteins

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 28))

Abstract

Heat shock proteins have been detected in many mammalian tissues, including the nervous system. In recent years, the family of small molecular weight heat shock proteins, Hsp27, Hsp32 (heme oxygenase), and αB-crystallin, have been shown to be similarly expressed and regulated in response to a variety of challenges. While Hsp27 has been detected in several organs in mammals (Klemenz et al. 1993; Tanguay et al. 1993), its expression and distribution in the central nervous system are particularly striking in both development and in the adult, normally and after pathophysiological challenge. Therefore, in this chapter, we will focus on the expression of Hsp27 in the nervous system. In our work we have focused on the constitutive and pathophysiological expression of Hsp27, particularly in comparison to Hsp70. In the central and peripheral nervous systems, Hsp27 is expressed constitutively in well-defined subsets of neurons but only occasionally in neuroglia. In contrast, expression of Hsp27 in neurons and neuroglia is markedly increased in response to physiological challenges and in various models of nervous system injury, leading to the idea of specific cell-type, stress-dependent expression of Hsp27. While little is known about the role of Hsp27 in neurodegenerative diseases, their detection in these diseases leads one to consider whether such expression is beneficial and slows the degenerative process or is detrimental and indicative of the severity of the disease process. The present chapter will emphasize results on the expression of Hsp27 in the nervous system after various challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anguelova E, Smirnova T (2000) Differential expression of small heat shock protein 27 in the rat hippocampus and septum after fimbria-fornix lesion. Neurosci Lett 280:99–102

    Article  PubMed  CAS  Google Scholar 

  • Aquino DA, Padin C, Perez JM, Peng D, Lyman WD, Chiu FC (1996) Analysis of glial fibrillary acidic protein, neurofilament protein, actin and heat shock proteins in human fetal brain during the second trimester. Dev Brain Res 91:1–10

    Article  CAS  Google Scholar 

  • Aquino DA, Capello E, Weisstein J, Sanders V, Lopez C, Tourtellotte W, Brosnan CF, Raine CS, Norton WT (1997) Multiple sclerosis: Altered expression of 70-and 27-kDa heat shock proteins in lesion and myelin. J Neuropath Exp Neurol 56:664–672

    PubMed  CAS  Google Scholar 

  • Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R (2000) Constitutive expression of the 25-kDa heat shock protein Hsp25 reveals novel parasagittal bands of Purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol 416:383–397

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R (2001) Expression of heat-shock protein hsp25 in mouse Purkinje cells during development reveals novel features of cerebellar compartmentation. J Comp Neurol 429:7–21

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JN, Plumier JCL, Robertson HA, Currie RW (1996) The inducible 70,000 molecular/weight heat shock protein is expressed in the degenerating dentate hilus and piriform cortex after systemic administration of kainic acid in the rat. Neuroscience 74:685–693

    Article  PubMed  CAS  Google Scholar 

  • Barbe MF, Tytell M, Gower DJ, Welch WJ (1988) Hyperthermia protects against light damage in the rat retina. Science 241:1817–1820

    Article  PubMed  CAS  Google Scholar 

  • Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, Feuerstein GZ (1998) Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29:1937–1950

    Article  PubMed  CAS  Google Scholar 

  • Bechtold DA, Brown IR (2000) Heat shock proteins Hsp27 and Hsp32 localize to synaptic sites in the rat cerebellum following hyperthermia. Mol Brain Res 75:309–320

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403

    Article  PubMed  CAS  Google Scholar 

  • Bignami A, Raju T, Dahl D (1982) Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera. Dev Biol 91:286–295

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum G (1995) Stress proteins: their role in the normal central nervous system and in disease states, especially multiple sclerosis. Springer Semin Immunopathol 17:107–118

    Article  PubMed  CAS  Google Scholar 

  • Blake MJ, Gershon D, Fargnole J, Holbrook NJ (1990) Discordant expression of heat shock protein mRNAs in tissues of heat-stressed rats. J Biol Chem 265:15275–15279

    PubMed  CAS  Google Scholar 

  • Bornemann KD, Staufenbiel M (2000) Transgenic mouse models of Alzheimer’s disease. Ann N Y Acad Sci 908:260–266

    Article  PubMed  CAS  Google Scholar 

  • Borrett D, Becker LE (1985) Alexander’s disease. A disease of astrocytes. Brain 108:367–385

    Article  PubMed  Google Scholar 

  • Brzyska M, Stege GJJ, Renkawek K, Bosman GJ (1998) Heat shock, but not the reactive state per se, induces increased expression of the small stress proteins hsp25 and αB-crystallin in glial cells in vitro. NeuroReport 9:1549–1552

    Article  PubMed  CAS  Google Scholar 

  • Chopp M, Chen H, Ho KL, Dereski MO, Brown E, Hetzel FW, Welch KM (1989) Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat. Neurology 39:1396–1398

    Article  PubMed  CAS  Google Scholar 

  • Clark BD, Brown IR (1985) Axonal transport of a heat shock protein in the rabbit visual system. Proc Natl Acad Sci USA 82:1281–1285

    Article  PubMed  CAS  Google Scholar 

  • Costigan M, Mannion RJ, Kendall G, Lewis SE, Campagna JA, Coggeshall RE, Meridith-Middleton J, Tate S, Woolf CJ (1998) Heat shock protein 27: developmental regulation and expression after peripheral nerve injury. J Neurosci 18:5891–5900

    PubMed  CAS  Google Scholar 

  • Currie RW, White FP (1981) Trauma-induced protein in rat tissues: a physiological role for a “heat shock” proteinoc Science 214:72–73

    Article  PubMed  CAS  Google Scholar 

  • Currie RW, Ellison JA, White RF, Feuerstein GZ, Wang X, Barone FC (2000) Benign focal ischemic preconditioning induces neuronal Hsp 70 and prolonged astrogliosis with expression of Hsp27. Brain Res. 863:169–181

    Article  PubMed  CAS  Google Scholar 

  • Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16:2553–2562

    PubMed  CAS  Google Scholar 

  • Dienel GA, Kiessling M, Jacewicz M, Pulsinelli WA (1986) Synthesis of heat shock proteins in rat brain cortex after transient ischemia. J Cereb Blood Flow Metab 6:505–510

    Article  PubMed  CAS  Google Scholar 

  • Edwards MJ, Walsh DA, Li Z (1997) Hyperthermia, teratogenesis and the heat shock response in mammalian embryos in culture. Int J Dev Biol 41:345–358

    PubMed  CAS  Google Scholar 

  • Frederickson RC (1992) Astroglia in Alzheimer’s disease. Neurobiol Aging 13:239–253

    Article  PubMed  CAS  Google Scholar 

  • Gernold M, Knauf U, Gaestel M, Stahl J, Kloetzel PM (1993) Development and tissue-specific distribution of mouse small heat shock protein hsp25. Dev Genet 14:103–111

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez MF, Shiraishi K, Hisanaga K, Sagar SM, Mandabach M, Sharp FR (1989) Heat shock proteins as markers of neural injury. Mol Brain Res 6:93–100

    Article  PubMed  CAS  Google Scholar 

  • Goto S, Korematsu K, Oyama T, Yamada K, Hamada J, Inoue N, Nagahiro S, Ushio Y (1993) Neuronal induction of 72-kDa heat shock protein following methamphetamine-induced hyperthermia in the mouse hippocampus. Brain Res 626:351–356

    Article  PubMed  CAS  Google Scholar 

  • Han J, Cheng FC, Yang Z, Dryhurst G (1999) Inhibitors of mitochondrial respiration, iron (II), and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: Potential implications to Parkinson’s disease. J Neurochem 73:1683–1695

    Article  PubMed  CAS  Google Scholar 

  • Head MW, Corbin E, Goldman JE (1993) Overexpression and abnormal modification of the stress proteins αB-crystallin and Hsp27 in Alexander disease. Am J Pathol 143:1743–1753

    PubMed  CAS  Google Scholar 

  • Hermisson M, Strik H, Rieger J, Dichgans J, Meyermann R, Weller M (2000) Expression and functional activity of heat shock proteins in human glioblastoma multiforme. Neurology 54: 1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Hitotsumatsu T, Iwaki T, Fukui M, Tateishi J (1996) Distinctive immunohistochemical profiles of small heat shock proteins (heat shock protein 27 and alpha B-crystallin) in human brain tumors. Cancer 77:352–361

    Article  PubMed  CAS  Google Scholar 

  • Hopkins DA, Plumier J-CL, Currie RW (1998) Induction of the 27-kDa heat shock protein (Hsp27) in the rat medulla oblongata after vagus nerve injury. Exp Neurol 153:173–183

    Article  PubMed  CAS  Google Scholar 

  • Inaguma Y, Hasegawa K, Goto S, Ito H, Kato K (1995) Induction of the synthesis of hsp27 and aB crystalline in tissues of heat-stressed rats and its suppression by ethanol or an ocr adrenergic antagonist. J Biochem 117:1238–1243

    PubMed  CAS  Google Scholar 

  • Iwaki T, Iwaki A, Tateishi J, Sakaki Y, Goldman JE (1993) αB-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am J Pathol 143:487–495

    PubMed  CAS  Google Scholar 

  • Jacob JM, Croes SA (1998) Acceleration of axonal outgrowth in motor axons from mature and old F344 rats after a conditioning lesion. Exp Neurol 152:231–237

    Article  PubMed  CAS  Google Scholar 

  • Jacob JM, McQuarrie IG (1993) Acceleration of axonal outgrowth in rat sciatic nerve at one week after axotomy J Neurobiol 24:356–367

    Article  PubMed  CAS  Google Scholar 

  • Jankovski A, Sotelo C (1996) Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J Comp Neurol 371:376–396

    Article  PubMed  CAS  Google Scholar 

  • Jankovski A, Rossi F, Sotelo C (1996) Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: evidence from heterochronic transplantations. Eur J Neurosci 8:2308–2319

    Article  PubMed  CAS  Google Scholar 

  • Joyeux M, Ribuot C, Bourlier V, Verdetti J, Durand A, Richard MJ, Godin-Ribuot D, Demenge P, Sanjay TW (1997) In vitro antiarrhythmic effect of prior whole body hyperthermia: implication of catalase. J Mol Cell Cardiol 29:3285–3292

    Article  PubMed  CAS  Google Scholar 

  • Karunanithi S, Barclay JW, Robertson RM, Brown IR, Atwood HL (1999) Neuroprotection at Drosophila synapses conferred by prior heat shock. J Neurosci 19:4360–4369

    PubMed  CAS  Google Scholar 

  • Kato H, Liu Y, Kogure K, Kato K (1994) Induction of 27-kDa heat shock protein following cerebral ischemia in a rat model of ischemic tolerance. Brain Res 634:235–244

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Katoh-Semba R, Takeuchi IK, Ito H, Kamei K (1999) Responses of heat shock proteins hsp27, alphαB-crystallin, and hsp70 in rat brain after kainic acid-induced seizure activity. J Neurochem 73:229–236

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Hirano A, Umahara T, Kato M, Herz F, Ohama E (1992) Comparative immunohistochemical study in the expression of alpha B crystalline, ubiquitin and stress-response protein 27 in ballooned neurons in various disorders. Neuropathol Appl Neurobiol 18:335–340

    Article  PubMed  Google Scholar 

  • Kato S, Hirano A, Kato M, Herz F, Ohama E (1993) Comparative study on the expression of stressresponse protein (srp) 72, srp 27, alpha B-crystallin and ubiquitin in brain tumours. An immunohistochemical investigation. Neuropathol Appl Neurobiol 19:436–442

    Article  PubMed  CAS  Google Scholar 

  • Khalid H, Tsutsumi K, Yamashita H, Kishikawa M, Yasunaga A, Shibata S (1995) Expression of the small heat shock protein (hsp) 27 in human astrocytomas correlates with histologic grades and tumor growth fractions. Cell Mol Neurobiol 15:257–268

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K, Matsumoto M, Kuwabara K, Tagaya M, Ohtsuki T, Hata R, Ueda H, Handa N, Kimura K, Kamada T (1991) ’Ischemic tolerance’ phenomenon detected in various brain regions. Brain Res 561:203–211

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K, Matsumoto M, Mabuchi T, Yagita Y, Mandai K, Matsushita K, Hori M, Yanagihara T, Sanjay TW (1997) Ischemic tolerance in hippocampal CA1 neurons studied using contralateral controls. Neuroscience 81:989–998

    Article  PubMed  CAS  Google Scholar 

  • Klemenz R, Andres AC, Frohli E, Schafer R, Aoyama A (1993) Expression of the murine small heat shock proteins hsp 25 and alpha B crystallin in the absence of stress. J Cell Biol 120:639–645

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Harris VA, Welsh FA (1995) Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 15:721–727

    Article  PubMed  CAS  Google Scholar 

  • Krueger AM, Armstrong JN, Plumier JC, Robertson HA, Currie RW (1999) Cell specific expression of Hsp70 in neurons and glia of the rat hippocampus after hyperthermia and kainic acidinduced seizure activity. Mol Brain Res 71:265–278

    Article  PubMed  CAS  Google Scholar 

  • Krueger-Naug AM, Hopkins DA, Armstrong JN, Plumier JC, Currie RW (2000) Hyperthermic induction of the 27-kDa heat shock protein (Hsp27) in neuroglia and neurons of the rat central nervous system. J Comp Neurol 428:495–510

    Article  PubMed  CAS  Google Scholar 

  • Lankford KL, Waxman SG, Kocsis JD (1998) Mechanisms of enhancement of neurite regeneration in vitro following a conditioning sciatic nerve lesion. J Comp Neurol 391:11–29

    Article  PubMed  CAS  Google Scholar 

  • Leao AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:359–390

    Google Scholar 

  • Leger JP, Smith FM, Currie RW (2000) Confocal microscopic localization of constitutive and heat shock-induced proteins HSP70 and HSP27 in the rat heart. Circulation 102:1703–1709

    Article  PubMed  CAS  Google Scholar 

  • Lewis SE, Mannion RJ, White FA, Coggeshall RE, Beggs S, Costigan M, Martin JL, Dillmann WH, Woolf CJ (1999) A role for HSP27 in sensory neuron survival. J Neurosci 19:8945–8953

    PubMed  CAS  Google Scholar 

  • Liang P, Amons R, Clegg JS, MacRae TH (1997) Molecular characterization of a small heat shock /alpha-crystallin protein in encysted Artemia embryos. J Biol Chem 272:19051–19058

    Article  PubMed  CAS  Google Scholar 

  • Mairesse N, Horman S, Mosselmans R, Galand P (1996) Antisense inhibition of the 27kDa heat shock protein production affects growth rate and cytoskeletal organization in MCF-7 cells. Cell Biol Int 20:205–212

    Article  PubMed  CAS  Google Scholar 

  • Matsushima K, Hogan MJ, Hakim AM (1996) Cortical spreading depression protects against subsequent focal cerebral ischemia in rats. J Cereb Blood Flow Metab 16:221–226

    Article  PubMed  CAS  Google Scholar 

  • Matsushima K, Schmidt-Kästner R, Hogan MJ, Hakim AM (1998) Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia. Brain Res 807:47–60

    Article  PubMed  CAS  Google Scholar 

  • Miller FD, Tetzlaff W, Bisby MA, Fawcett JW, Milner RJ (1989) Rapid induction of the major embryonic alpha-tubulin mRNA, T alpha 1, during nerve regeneration in adult rats. J Neurosci 9:1452–1463

    PubMed  CAS  Google Scholar 

  • Nowak TS Jr (1985) Synthesis of a stress protein following transient ischemia in the gerbil. J Neurochem 45:1635–1641

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Rhee V, Ho OL (1974) Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res 77:507–512

    Article  PubMed  CAS  Google Scholar 

  • Omar R, Pappolla M (1993) Oxygen free radicals as inducers of heat shock protein synthesis in cultured human neuroblastoma cells: Relevance to neurodegenerative diseases. Eur Arch Psychiatry Clin Neurosci 242:262–267

    Article  PubMed  CAS  Google Scholar 

  • Pappolla MA, Sos M, Omar RA, Sambamurti K (1996) The heat shock/oxidative stress connection. Relevance to Alzheimer disease. Mol Chem Neuropathol 28:21–34

    Article  PubMed  CAS  Google Scholar 

  • Plumier JC, Armstrong JN, Landry J, Babity JM, Robertson HA, Currie RW (1996) Expression of the 27,000 mol. wt heat shock protein following kainic acid-induced status epilepticus in the rat. Neuroscience 75:849–856

    Article  PubMed  CAS  Google Scholar 

  • Plumier JC, Armstrong JN, Wood NI, Babity JM, Hamilton TC, Hunter AJ, Robertson HA, Currie RW (1997a) Differential expression of c-fos, Hsp70 and Hsp27 after photo thrombotic injury in the rat brain. Mol Brain Res 45:239–246

    Article  PubMed  CAS  Google Scholar 

  • Plumier JC, David JC, Robertson HA, Currie RW (1997b) Cortical application of potassium chloride induces the low-molecular weight heat shock protein (Hsp27) in astrocytes. J Cereb Blood Flow Metab 17:781–790

    Article  PubMed  CAS  Google Scholar 

  • Plumier JC, Hopkins DA, Robertson HA, Currie RW (1997c) Constitutive expression of the 27-kDa heat shock protein (Hsp27) in sensory and motor neurons of the rat nervous system. J Comp Neurol 384:409–428

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB, Hsiao KK (1994) Human prion diseases. Ann Neurol 35:385–395

    Article  PubMed  CAS  Google Scholar 

  • Puisieux F, Deplanque D, Pu Q, Souil E, Bastide M, Bordet R (2000) Differential role of nitric oxide pathway and heat shock protein in preconditioning and lipopolysaccharide-induced brain ischemic tolerance. Eur J Pharmacol 389:71–78

    Article  PubMed  CAS  Google Scholar 

  • Renkawek K, Bosman GJ, de Jong WW (1994) Expression of small heat-shock protein hsp27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta Neuropathol 87: 511–519

    Article  PubMed  CAS  Google Scholar 

  • Renkawek K, Stege GJ, Bosman GJ (1999) Dementia, gliosis and expression of the small heat shock proteins Hsp27 and αB-crystallin in Parkinson’s disease. Neuro Report 10:2273–2276

    CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki T, Arsenijevic Y, Ryan AK, Rosenfeld MG, Weiss S (1999) A role for the POU-III transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation. EMBO J 18:444–456

    Article  PubMed  CAS  Google Scholar 

  • Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K (1993) Alpha B crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer’s disease. J Neurol Sci 119:203–208

    Article  PubMed  CAS  Google Scholar 

  • Sian J, Gerlach M, Youdim MB, Riederer P (1999) Parkinson’s disease: a major hypokinetic basal ganglia disorder. J Neural Transm 106:443–476

    Article  PubMed  CAS  Google Scholar 

  • Sloviter RS, Lowenstein DH (1992) Heat shock protein expression in vulnerable cells of the rat hippocampus as an indicator of excitation-induced neuronal stress. J Neurosci 12:3004–3009

    PubMed  CAS  Google Scholar 

  • Steare SE, Yellon DM (1993) The protective effect of heat stress against reperfusion arrhythmias in the rat. J Mol Cell Cardiol 25:1471–1481

    Article  PubMed  CAS  Google Scholar 

  • Stege GJ, Renkawek K, Overkamp PS, Verschuure P, van Rijk AF, Reijnen-Aalbers A, Boelens WC, Bosman GJ, de Jong WW (1999) The molecular chaperone alphαB-crystallin enhances amyloid beta neurotoxicity. Biochem Biophys Res Commun 262:152–156

    Article  PubMed  CAS  Google Scholar 

  • Tanguay RM, Wu Y, Khandjian EW (1993) Tissue-specific expression of heat shock proteins of the mouse in the absence of stress. Dev Gen 14:112–118

    Article  CAS  Google Scholar 

  • Tatzeit J, Zuo J, Voellmy R, Scott M, Hartl U, Prusiner SB, Welch WJ (1995) Scrapie prions selectively modify the stress response in neuroblastoma cells. Proc Natl Acad Sci USA 92:2944–2948

    Article  Google Scholar 

  • Tatzeit J, Voellmy R, Welch WJ (1998) Abnormalities in stress proteins in prion diseases. Cell Mol Neurobiol 18:721–729

    Article  Google Scholar 

  • Tetzlaff W, Alexander SW, Miller FD, Bisby MA (1991) Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 11:2528–2544

    PubMed  CAS  Google Scholar 

  • Van Noort JM (1996) Multiple sclerosis: An altered immune response or an altered stress responseoc J Mol Med 74:285–296

    Article  PubMed  Google Scholar 

  • Van Noort JM, van Sechel AC, Bajramovic JJ, el Ouagmiri M, Polman CH, Lassmann H, Ravid R (1995) The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 375:798–801

    Article  PubMed  Google Scholar 

  • Van Noort JM, van Sechel AC, van Stipdonk MJ, Bajramovic JJ (1998) The small heat shock protein alpha B-crystallin as key autoantigen in multiple sclerosis. Prog Brain Res 117:435–452

    Article  PubMed  Google Scholar 

  • Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11:951–966

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Lee JE, Giffard RG (1999) Overexpression of bcl-2,bcl-XL or hsp70 in murine cortical astrocytes reduces injury of co-cultured neurons. Neurosci Lett 277:193–197

    Article  PubMed  CAS  Google Scholar 

  • Zerlin M, Levison SW, Goldman JE (1995) Early patterns of migration, morphogenesis, and intermediate filament expression of subventricular zone cells in the postnatal rat forebrain. J Neurosci 15:7238–7249

    PubMed  CAS  Google Scholar 

  • Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423–1429

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krueger-Naug, A.M.R., Plumier, JC.L., Hopkins, D.A., Currie, R.W. (2002). Hsp27 in the Nervous System: Expression in Pathophysiology and in the Aging Brain. In: Arrigo, AP., Müller, W.E.G. (eds) Small Stress Proteins. Progress in Molecular and Subcellular Biology, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56348-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56348-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62708-8

  • Online ISBN: 978-3-642-56348-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics