Skip to main content

Molecular and Cellular Angiogenesis

  • Chapter
Pan Vascular Medicine

Abstract

Blood vessels deliver oxygen and nutrients — essential for survival of cells in multicellular organisms. Since the diffusion for oxygen is limited, cells in the mammalian body are located within a short range of blood vessels. The growth of new blood vessels via vasculogenesis or angiogenesis is tightly regulated by an intricate balance between activators and inhibitors. In a normal adult, angiogenesis cyclically occurs during reproduction and as part of a self-limiting reparative program after wounding or during inflammation. The remainder of the adult vasculature is quiescent, with only 0.01% of endothelial cells undergoing cell division. During pathological conditions, angiogenesis occurs in an uncontrolled manner. Leonardo Da Vinci was among the first to demonstrate angiogenesis in an inflamed human lung. We now know that abnormal vascular growth or function also contributes to numerous nonneoplastic disorders of significant morbidity, and the list is expanding every day (Table 1). For example, an excess of vessels in diabetic retinopathy can lead to blindness or promote cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Noden DM (1989) Embryonic origins and assembly of blood vessels. Annu Rev Respir Dis 140:1097–1103

    CAS  Google Scholar 

  2. Hirschi KK, d’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698

    CAS  PubMed  Google Scholar 

  3. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    CAS  PubMed  Google Scholar 

  4. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    CAS  PubMed  Google Scholar 

  5. Choi K (1998) Hemangioblast development and regulation. Biochem Cell Biol 76:947–956

    CAS  PubMed  Google Scholar 

  6. Krah K, Mironov V, Risau W, Flamme I (1994) Induction of vasculogenesis in quail blastodisc-derived embryoid bodies. Dev Biol 164:123–132

    CAS  PubMed  Google Scholar 

  7. Carmeliet P (1999) Developmental biology. Controlling the cellular brakes (news). Nature 401:657–658

    CAS  PubMed  Google Scholar 

  8. Vandenbunder B, Pardanaud L, Jaffredo T, Mirabel MA, Stehelin D (1989) Complementary patterns of expression of c-ets 1, c-myb and c-myc in the blood-forming system of the chick embryo. Development 107:265–274

    CAS  PubMed  Google Scholar 

  9. Thomas PQ, Brown A, Beddington RS (1998) Hex: a homeobox gene revealing periimplantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:85–94

    CAS  PubMed  Google Scholar 

  10. Xiong JW, Leahy A, Lee HH, Stuhlmann H (1999) Vezfl: a Zn finger transcription factor restricted to endothelial cells and their precursors. Dev Biol 206:123–141

    CAS  PubMed  Google Scholar 

  11. Belotti D, Clausse N, Flagiello D, Alami Y, Daukandt M, Deroanne C, Malfoy B, Boncinelli E, Faiella A, Castronovo V (1998) Expression and modulation of homeobox genes from cluster B in endothelial cells. Lab Invest 78:1291–1299

    CAS  PubMed  Google Scholar 

  12. Boudreau N, Andrews C, Srebrow A, Ravanpay A, Cheresh DA (1997) Induction of the angiogenic phenotype by Hox D3. J Cell Biol 139:257–264

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Elefanty AG, Robb L, Birner R, Begley CG (1997) Hematopoietic-specific genes are not induced during in vitro differentiation of scl-null embryonic stem cells. Blood 90:1435–1447

    CAS  PubMed  Google Scholar 

  14. Robertson SM, Kennedy M, Shannon JM, Keller G (2000) A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development 127:2447–2459

    CAS  PubMed  Google Scholar 

  15. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677

    CAS  PubMed  Google Scholar 

  16. Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) Flk-1, an fit-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118:489–498

    CAS  PubMed  Google Scholar 

  17. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    CAS  PubMed  Google Scholar 

  18. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, Pieczek A, Iwaguro H, Hayashi SI, Isner JM, Asahara T (2000) Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 86:1198–1202

    CAS  PubMed  Google Scholar 

  20. Rafii S (2000) Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest 105:17–19

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    CAS  PubMed  Google Scholar 

  23. McBride JL, Ruiz JC (1998) Ephrin-Al is expressed at sites of vascular development in the mouse. Mech Dev 77:201–204

    CAS  PubMed  Google Scholar 

  24. Ferrara N (1999) Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 56:794–814

    CAS  PubMed  Google Scholar 

  25. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Kendraprasad H, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single vascular endothelial growth factor allele. Nature 380:435–439

    CAS  PubMed  Google Scholar 

  26. Ferrara N, Carver Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    CAS  PubMed  Google Scholar 

  27. Shalaby F, Ho J, Stanford WL et al (1997) A requirement for Flk-1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990

    CAS  PubMed  Google Scholar 

  28. Fong GH, Zhang L, Bryce DM, Peng J (1999) Increased hemangioblast commitment, not vascular disorganization, is the primary defect in Flt-I knock-out mice. Development 126:3015–3025

    CAS  PubMed  Google Scholar 

  29. Kimura H, Weisz A, Kurashima, Y, Hashimoto K, Ogura T, D’Acquisto F, Addeo R, Makuuchi M, Esumi H (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95: 189–197

    CAS  PubMed  Google Scholar 

  30. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924

    CAS  PubMed  Google Scholar 

  31. Gale NW, Yancopoulos GD (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13: 1055–1066

    CAS  PubMed  Google Scholar 

  32. Thurston G, Rudge JS, Loffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:1–4

    Google Scholar 

  33. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Dvorak HF (2000) VPF/VEGF and the angiogenic response. Semin Perinatol 24:75–78

    CAS  PubMed  Google Scholar 

  36. Jain RK, Safabakhsh N, Sckell A, Chen Y, Jiang P, Benjamin L, Yuan F, Keshet E (1998) Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 95:10820–10825

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Fukumura D, Yuan F, Monsky WL, Chen Y, Jain RK (1997) Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 151:679–688

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    CAS  PubMed  Google Scholar 

  39. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    CAS  PubMed  Google Scholar 

  40. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    CAS  PubMed  Google Scholar 

  41. Kim I, Kim HG, Moon SO, Chae SW, So JN, Koh KN, Ahn BC, Koh GY (2000) Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res 86:952–959

    CAS  PubMed  Google Scholar 

  42. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin-binding activity. Cell 92:391–400

    CAS  PubMed  Google Scholar 

  44. Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA (2000) Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci USA 97:2202–2207

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Bein K, Simons M (2000) Thrombospondin type I repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem 275:32167–32173

    CAS  PubMed  Google Scholar 

  46. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed Central  PubMed  Google Scholar 

  47. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nubetae O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    CAS  PubMed  Google Scholar 

  48. Carmeliet P, Collen D (1998) Development and disease in pro-teinase-deficient mice: role of the plasminogen, matrix metalloproteinase and coagulation system. Thromb Res 91:255–285

    CAS  PubMed  Google Scholar 

  49. Guo Y, Higazi AA, Arakelian A, Sachais BS, Cines D, Goldfarb RH, Jones TR, Kwaan H, Mazar AP, Rabbani SA (2000) A peptide derived from the nonreceptor binding region of urokinase plasminogen activator (uPA) inhibits tumor progression and angiogenesis and induces tumor cell death in vivo. FASEB J 14:1400–1410

    CAS  PubMed  Google Scholar 

  50. Bajou K, Noel A, Gerard RD, Masson V, Brunner N, Holst-Hansen C, Skobe M, Fusenig NE, Carmeliet P, Collen D, Foidart JM (1998) Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med 4:923–928

    CAS  PubMed  Google Scholar 

  51. Ferrara N (2000) Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 55:15–35

    CAS  PubMed  Google Scholar 

  52. Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60:203–212

    CAS  PubMed  Google Scholar 

  53. Persico MG, Vincenti V, DiPalma T (1999) Structure, expression and receptor-binding properties of placenta growth factor (PlGF). Curr Top Microbiol Immunol 237:31–40

    CAS  PubMed  Google Scholar 

  54. Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M, Mould A, Cahill MM, Tonks ID, Grimmond SM, Townson S, Wells C, Little M, Cummings MC, Hayward NK, Kay GF (2000) Mice lacking the vascular endothelial growth factor-B gene (VEGF-B) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86: E29–E35

    Google Scholar 

  55. Eriksson U, Alitalo K (1999) Structure, expression and receptor-binding properties of novel vascular endothelial growth factors. Curr Top Microbiol Immunol 237:41–57

    CAS  PubMed  Google Scholar 

  56. Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949

    CAS  PubMed  Google Scholar 

  57. Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD (1998) Increased vascularization in mice overexpressing angiopoietin-i. Science 282:468–471

    CAS  PubMed  Google Scholar 

  58. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-i, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    CAS  PubMed  Google Scholar 

  59. Carmeliet P (2000) Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? (editorial, comment.) Circ Res 87:176–178

    CAS  PubMed  Google Scholar 

  60. Lindahl P, Hellstrom M, Kalen M, Betsholtz C (1998) Endothelial-peri-vascular cell signaling in vascular development: lessons from knockout mice. Curr Opin Lipidol 9:407–411

    CAS  PubMed  Google Scholar 

  61. Lindahl P, Bostrom H, Karlsson L, Hellstrom M, Kalen M, Betsholtz C (1999) Role of platelet derived growth factors in angiogenesis and alveogenesis. Curr Top Pathol 93:27–33

    CAS  PubMed  Google Scholar 

  62. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–2578

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Pepper MS (1997) Transforming growth factor-beta: vasculogene-sis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43

    CAS  PubMed  Google Scholar 

  64. Gohongi T, Fukumura D, Boucher Y, Yun CO, Soff GA, Compton C, Todoroki T, Jain RK (1999) Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor beta-1. Nat Med 5:1203–1208

    CAS  PubMed  Google Scholar 

  65. Guo DQ, Wu LW, Dunbar JD, Ozes ON, Mayo LD, Kessler KM, Gustin JA, Baerwald MR, Jaffe EA, Warren RS, Donner DB (2000) Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 275: 11216–11221

    CAS  PubMed  Google Scholar 

  66. Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8

    CAS  PubMed  Google Scholar 

  67. Eliceiri BP, Cheresh DA (1999) The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103:1227–1230

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Ilan N, Mahooti S, Rimm DL, Madri JA (1999) PECAM-1 (CD31) functions as a reservoir for and a modulator of tyrosine-phospho-rylated beta-catenin. J Cell Sci 112:3005–3014

    CAS  PubMed  Google Scholar 

  69. Huynh-Do U, Stein E, Lane AA, Liu H, Cerretti DP, Daniel TO (1999) Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5betal integrins. EMBO J 18:2165–2173

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Shima DT, Mailhos C (2000) Vascular developmental biology: getting nervous. Curr Opin Genet Dev 10:536–542

    CAS  PubMed  Google Scholar 

  71. Wilkinson DG (2000) Eph receptors and ephrins: regulators of guidance and assembly. Int Rev Cytol 196:177–244

    CAS  PubMed  Google Scholar 

  72. Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endo-thelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Knudsen KA, Frankowski C, Johnson KR, Wheelock MJ (1998) A role for Cadherins in cellular signaling and differentiation. J Cell Biochem Suppl 31:168–176

    Google Scholar 

  74. Varner JA, Brooks PC, Cheresh DA (1995) Review: the integrin (XVB3: angiogenesis and apoptosis. Cell Adhesion Commun 3:367–374

    CAS  Google Scholar 

  75. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    CAS  PubMed  Google Scholar 

  76. Hiraki Y, Shukunami C (2000) Chondromodulin-I as a novel cartilage-specific growth-modulating factor. Pediatr Nephrol 14:602–605

    CAS  PubMed  Google Scholar 

  77. O’Reilly MS, Holingren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma (see comments). Cell 79:315–328

    PubMed  Google Scholar 

  78. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    PubMed  Google Scholar 

  79. Baish JW, Jain RK (2000) Fractals and cancer. Cancer Res 60: 3683–3688

    CAS  PubMed  Google Scholar 

  80. Bayless KJ, Salazar R, Davis GE (2000) RGD-dependent vacuola-tion and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(l) integrins. Am J Pathol 156: 1673–1683

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Gendron RL, Adams LC, Paradis H (2000) Tubedown-1, a novel acetyltransferase associated with blood vessel development. Dev Dyn 218:300–315

    CAS  PubMed  Google Scholar 

  82. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oostuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    CAS  PubMed  Google Scholar 

  83. Stefanec T (2000) Endothelial apoptosis: could it have a role in the pathogenesis and treatment of disease? Chest 117:841–854

    CAS  PubMed  Google Scholar 

  84. Kockx MM, Knaapen MW (2000) The role of apoptosis in vascular disease. J Pathol 190:267–280

    CAS  PubMed  Google Scholar 

  85. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028

    CAS  PubMed  Google Scholar 

  86. Meeson AP, Argilla M, Ko K, Witte L, Lang RA (1999) VEGF deprivation-induced apoptosis is a component of programmed capillary regression. Development 126:1407–1415

    CAS  PubMed  Google Scholar 

  87. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    CAS  PubMed  Google Scholar 

  88. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O’Connor DS, Li F, Altieri DC, Sessa WC (2000) Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275:9102–9105

    CAS  PubMed  Google Scholar 

  89. Dimmeler S, Haendeler J, Rippmann V, Nehls M, Zeiher AM (1996) Shear stress inhibits apoptosis of human endothelial cells. FEBS Lett 399:71–74

    CAS  PubMed  Google Scholar 

  90. Pages G, Milanini J, Richard DE, Berra E, Gothie E, Vinals F, Pouyssegur J (2000) Signaling angiogenesis via p42/p44 MAP kinase cascade. Ann NY Acad Sci 902:187–200

    CAS  PubMed  Google Scholar 

  91. Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28

    CAS  PubMed  Google Scholar 

  92. Tsukita S, Furuse M (1999) Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9:268–273

    CAS  PubMed  Google Scholar 

  93. Bazzoni G, Martinez Estrada O, Dejana E (1999) Molecular structure and functional role of vascular tight junctions. Trends Cardiovasc Med 9:147–152

    CAS  PubMed  Google Scholar 

  94. Risau W (1995) Differentiation of endothelium. FASEB J 9:926–933

    CAS  PubMed  Google Scholar 

  95. Risau W (1998) Development and differentiation of endothelium. Kidney Int Suppl 67:S3–S6

    Google Scholar 

  96. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry (see comments). Am J Pathol 155:739–752

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn L (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 97:14608–14613

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Folberg R, Hendrix MJ, Maniotis AJ (2000) Vasculogenic mimicry and tumor angiogenesis (see comments). Am J Pathol 156:361–381

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86:286–292

    CAS  PubMed  Google Scholar 

  100. Patan S, Munn LL, Jain RK (1996) Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 51:260–272

    CAS  PubMed  Google Scholar 

  101. Carmeliet P (2000) Mechanisms of angiogenesis and arterio-genesis. Nat Med 6:389–395

    CAS  PubMed  Google Scholar 

  102. Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E, Jungles S, Carter R, Krieger JE, Manseau EJ, Harvey VS, Eckelhoefer IA, Feng D, Dvorak AM, Mulligan RC, Dvorak HF (2000) Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 80:99–115

    CAS  PubMed  Google Scholar 

  103. Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D’Amore PA, Shima DT (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188 (see comments). Nat Med 5:495–502

    CAS  PubMed  Google Scholar 

  104. Gomez RA (1998) Role of angiotensin in renal vascular development. Kidney Int Suppl 67:S12–S16

    Google Scholar 

  105. Fernandez B, Buehler A, Wolfram S, Kostin S, Espanion G, Franz WM, Niemann H, Doevendans PA, Schaper W, Zimmermann R (2000) Transgenic myocardial overexpression of fibroblast growth factor-1 increases coronary artery density and branching (see comments). Circ Res 87:207–213

    CAS  PubMed  Google Scholar 

  106. Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA, Kintner CR, Stark KL (2000) D114, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14:1313–1318

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Zimrin AB, Pepper MS, McMahon GA, Nguyen F, Montesano R, Maciag T (1996) An antisense oligonucleotide to the notch ligand jagged enhances fibroblast growth factor-induced angiogenesis in vitro. J Biol Chem 271:32499–32502

    CAS  PubMed  Google Scholar 

  108. Zhong TP, Rosenberg M, Mohideen MA, Weinstein B, Fishman MC (2000) Gridlocky an HLH gene required for assembly of the aorta in zebrafish. Science 287:1820–1824

    CAS  PubMed  Google Scholar 

  109. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron-Maguire M, Rand EB, Weirimaster G, Gridley T (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jaggedl. Hum Mol Genet 8:723–730

    CAS  PubMed  Google Scholar 

  111. Leimeister C, Schumacher N, Steidl C, Gessler M (2000) Analysis of HeyL expression in wild-type and Notch pathway mutant mouse embryos. Mech Dev 98:175–178

    CAS  PubMed  Google Scholar 

  112. McBride JL, Ruiz JC (1998) Ephrin-Al is expressed at sites of vascular development in the mouse. Mech Dev 77:201–204

    CAS  PubMed  Google Scholar 

  113. Helbling PM, Saulnier DM, Brandli AW (2000) The receptor tyrosine kinase EphI34 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis. Development 127: 269–278

    CAS  PubMed  Google Scholar 

  114. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-132 and its receptor Eph-B4 (see comments). Cell 93:741–753

    CAS  PubMed  Google Scholar 

  116. Ekman N, Lymboussaki A, Vastrik I, Sarvas K, Kaipainen A, Alitalo K (1997) Bmx tyrosine kinase is specifically expressed in the endocardium and the endothelium of large arteries. Circulation 96:1729–1732

    CAS  PubMed  Google Scholar 

  117. Thurston G, Baluk P, McDonald DM (2000) Determinants of endothelial cell phenotype in venules. Microcirculation 7:67–80

    CAS  PubMed  Google Scholar 

  118. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598

    CAS  PubMed  Google Scholar 

  119. Carmeliet P (2000) Developmental biology. One cell, two fates (comment). Nature 408:43, 45

    CAS  PubMed  Google Scholar 

  120. Dettman RW, Denetclaw W, Jr., Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, peri-vascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181

    CAS  PubMed  Google Scholar 

  121. Creazzo TL, Godt RE, Leatherbury L, Conway SJ, Kirby ML (1998) Role of cardiac neural crest cells in cardiovascular development. Annu Rev Physiol 60:267–286

    CAS  PubMed  Google Scholar 

  122. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S (2000) Flkl-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96

    CAS  PubMed  Google Scholar 

  123. Rucker HK, Wynder HJ, Thomas WE (2000) Cellular mechanisms of CNS pericytes. Brain Res Bull 51:363–369

    CAS  PubMed  Google Scholar 

  124. Shovlin CL (1999) Supermodels and disease: insights from the HHT mice (comment). J Clin Invest 104:1335–1336

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP (1999) Defective angiogenesis in mice lacking endoglin. Science 284:15:34–37

    Google Scholar 

  126. Yamagishi H, Olson EN, Srivastava D (2000) The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. J Clin Invest 105:261–270

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    CAS  PubMed  Google Scholar 

  128. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164

    CAS  PubMed  Google Scholar 

  129. Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA, Olson EN (1998) Requirement of the MADS box transcription factor MEF2C for vascular development. Development 125:4565–4574

    CAS  PubMed  Google Scholar 

  130. Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene RD, Ono R, Reinhardt DP, Sakai LY, Jensen Biery N, Bunton T, Dietz HC, Ramirez F (1997) Targeting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 17:218–222

    CAS  PubMed  Google Scholar 

  131. Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, Eichwald E, Keating MT (1998) Elastin is an essential determinant of arterial morphogenesis. Nature 393:276–280

    CAS  PubMed  Google Scholar 

  132. Schaper W, Ito WD (1996) Molecular mechanisms of coronary collateral vessel growth. Circ Res 79:911–919

    CAS  PubMed  Google Scholar 

  133. Buschmann I, Schaper W (2000) The pathophysiology of the collateral circulation (arteriogenesis). J Pathol 190:338–342

    CAS  PubMed  Google Scholar 

  134. Boulton AJ, Malik RA (1998) Diabetic neuropathy. Med Clin North Am 82:909–929

    CAS  PubMed  Google Scholar 

  135. Rabinovitch M (1999) Pulmonary hypertension: pathophysiology as a basis for clinical decision making. J Heart Lung Transplant 18:1041–1053

    CAS  PubMed  Google Scholar 

  136. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vanden-Driessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–83

    CAS  PubMed  Google Scholar 

  137. Dumas JP, Bardou M, Goirand F, Dumas M (1999) Hypoxic pulmonary vasoconstriction. Gen Pharmacol 33:289–297

    CAS  PubMed  Google Scholar 

  138. Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E (1994) Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc Res 28:1176–1179

    CAS  PubMed  Google Scholar 

  139. Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–1991

    CAS  PubMed  Google Scholar 

  140. Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588–594

    CAS  PubMed  Google Scholar 

  141. Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res 77:638–643

    CAS  PubMed  Google Scholar 

  142. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis (see comments). Nature 399:271–275

    CAS  PubMed  Google Scholar 

  143. Maltepe E, Schmidt JV, Baunoch D, Bradfield CA, Simon CM (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386:403–407

    CAS  PubMed  Google Scholar 

  144. Semenza GL (2000) Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 59:47–53

    CAS  PubMed  Google Scholar 

  145. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E, Keshet E (1998) Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:4 85–490

    Google Scholar 

  146. Li J, Post M, Volk R, Gao Y, Li M, Metais C, Sato K, Tsai J, Aird W, Rosenberg RD, Hampton TG, Sellke F, Carmeliet P, Simons M (2000) PR39, a peptide regulator of angiogenesis. Nat Med 6:49–55

    CAS  PubMed  Google Scholar 

  147. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, Johnson RS (2000) Hypoxia-inducible factor-1 alpha is a positive factor in solid tumor growth. Cancer Res 60:4010–4015

    CAS  PubMed  Google Scholar 

  148. Unthank JL, Fath SW, Burkhart HM, Miller SC, Dalsing MC (1996) Wall remodeling during luminal expansion of mesenteric arterial collaterals in the rat. Circ Res 79:1015–1023

    CAS  PubMed  Google Scholar 

  149. Brown JD, DiChiara MR, Anderson KR, Gimbrone MA Jr, Topper JN (1999) MEKK-1, a component of the stress (stress-activated protein kinase/c-jun N-terminal kinase) pathway, can selectively activate SMAD2-mediated transcriptional activation in endothelial cells. J Biol Chem 274:8797–8805

    CAS  PubMed  Google Scholar 

  150. Topper JN, Gimbrone MA Jr (1999) Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial pheno-type. Mol Med Today 5:40–46

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carmeliet, P., Collen, D., Conway, E.M. (2002). Molecular and Cellular Angiogenesis. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics