Skip to main content

Molecular Biology of Collateral Circulation

  • Chapter
Pan Vascular Medicine

Abstract

According to 1997 estimates, 59,700,700 Americans (about 22% of the U.S. population) have one or more forms of cardiovascular disease (CVD). The statistics on the cause of death are even worse: 41.2% of all deaths are caused by some form of CVD [1]. Occlusive arterial diseases secondary to atherosclerosis and thrombosis are also the main cause of morbidity and mortality in Europe. Advances in conservative treatment as well as interventional and surgical revascularization have improved the prognosis of CVD patients. However, these different types of treatment do not cure, but only delay vital complications underlying the palliative character of present therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. American Heart Association (2000) Heart and stroke statistical update 2000

    Google Scholar 

  2. Dumont DJ, Fong GH, Puri MC, Gradwohl G, Alitalo K, Breitman ML (1995) Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 203:80–92

    Article  CAS  PubMed  Google Scholar 

  3. Bussolino F, Mantovani A, Persico G (1997) Molecular mechanisms of blood vessel formation. Trends Biochem Sci 22:251–256

    Article  CAS  PubMed  Google Scholar 

  4. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  5. Schaper W, Scholz D (1997) Growth and remodeling of coronary collateral vessels. In: LaFont A, Topol EJ (eds) Arterial remodeling: a critical factor in restenosis. Kluwer, Boston, pp 31–48

    Chapter  Google Scholar 

  6. Domini R (1968) Clasificación nosologica de los vasos colaterales arteriales en relación con las progresivas modificaciones de la tectónica parietal inducida por la nueva hemodinámica. Estudio de arteriografia clínica comprada. Angiología 20:124–139

    CAS  PubMed  Google Scholar 

  7. Spalteholz W (1907) Die Koronararterien des Herzens. Verh Anat Ges 21:141; in Anat Anz 30

    Google Scholar 

  8. Spalteholz W (1924) Die Arterien der Herzwand. Hirzel, Leipzig

    Google Scholar 

  9. Longland CJ (1953) The collateral circulation of the limb. Ann R Coll Surg Engl 13:161

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Mautz FR, Gregg DE (1937) The dynamics of collateral circulation following chronic occlusion of coronary arteries. Proc Soc Exp Biol Med 36:797

    Article  Google Scholar 

  11. Baroldi G, Mantero O, Scomazzoni G (1956) The collaterals of the coronary arteries in normal and pathologic hearts. Circ Res 4:223–229

    Article  CAS  PubMed  Google Scholar 

  12. Fulton WFM (1965) The coronary arteries. Thomas, Springfield, Illinois

    Google Scholar 

  13. Schaper W (1971) The collateral circulation of the heart. In: Schaper W (ed) The collateral circulation of the heart. Elsevier North Holland, Amsterdam

    Google Scholar 

  14. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Babiak A, Bühler A, Wiesnet M, Busse R, Schaper J, Schaper W (2000) Ultrastructure and molecular histology of rabbit hindlimb collateral artery growth. Virchows Arch 436:257–270

    Article  CAS  PubMed  Google Scholar 

  15. Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner J (1998) Mouse model of angiogenesis. Am J Pathol 152:1667–1679

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D, Sullivan A, Isner JM (1998) Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97:99–107

    Article  CAS  PubMed  Google Scholar 

  17. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–2578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W (1997) Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol 273:H1255–H1265

    Google Scholar 

  19. Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87:1153–1155

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt RF, Thews G (1997) Physiologie des Menschen. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  21. Scholz D, Devaux B, Hirhe A, Pöztsch B, Kropp B, Schaper W, Schaper J (1996) Expression of adhesion molecules is specific and time-dependent in cytokine stimulated endothelial cells in culture. Cell Tissue Res 284:415–423

    Article  CAS  PubMed  Google Scholar 

  22. Cheng J, Wung B, Chao Y, Wang D (1996) Cyclic strain enhances adhesion of monocytes to endothelial cells by increasing intercellular adhesion molecule-1 expression. Hypertension 28:386–391

    Article  CAS  PubMed  Google Scholar 

  23. Chien S, Li S, Shyy YJ (1998) Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31:162–169

    Article  CAS  PubMed  Google Scholar 

  24. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    Article  CAS  PubMed  Google Scholar 

  25. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94:849–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:311–314

    Article  Google Scholar 

  27. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W (1998) Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101:40–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Catoretti G, Becker MHG, Key G, Duchrow M, Schlüter C, Galle J, Gerdes J (1992) Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J Pathol 168:357–363

    Article  Google Scholar 

  29. Gerdes J (1990) Ki-67 and other proliferation markers useful for immunohistological diagnostic and prognostic evaluations in human malignancies. Semin Cancer Biol 1:199–206

    CAS  PubMed  Google Scholar 

  30. Schlüter K, Duchrow M, Wohlenberg C, Becker MHG, Key G, Flad H-D, Gerdes J (1993) The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J Cell Biol 123:513–522

    Article  PubMed  Google Scholar 

  31. Shiraishi T (1990) Cell kinetic analysis of brain tumors using the monoclonal antibody Ki-67: in vitro and in situ study. Acta Med Okayama 44:187–201

    CAS  PubMed  Google Scholar 

  32. Wolf C, Cai W-J, Vosschulte R, Koltai S, Mousavipour D, Scholz D, Afsah-Hedjri A, Schaper W, Schaper J (1998) Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol 30:2291–2305

    Article  CAS  PubMed  Google Scholar 

  33. Ziegelhoeffer T, Hoefer IE, van Royen N, Buschmann IR (1999) Effective reduction in collateral artery formation through matrix metalloproteinase inhibitors. Circulation 100 [Suppl I]:3719

    Google Scholar 

  34. Deindl E, Fernández B, HIE, van Royen N, Scholz D, Schaper W (1999) Arteriogenesis, collateral blood vessels, and their development. In: Rubanyi GM (ed) Angiogenesis in health and disease. Dekker, New York, pp 31–46

    Google Scholar 

  35. Buschmann I, Ito W, Höfer I, Scholz D, Schaper W (1998) Granulocyte-Macrophage-Colony-Stimulating-Factor (GM-CSF) fördert das Kollateralarterienwachstum durch prolongierte Macrophagenaktivität. Z Kardiol 87 [Suppl 1]:17

    Google Scholar 

  36. Okada-Ban M, Thiery JP, Jouanneau J (2000) Fibroblast growth factor-2. Int J Biochem Cell Biol 32:263–267

    Article  CAS  PubMed  Google Scholar 

  37. Engleka KA, Maciag T (1999) Molecular mechanisms of the fibroblast growth factor family. In: Ware JA, Simons M (eds) Angiogenesis and cardiovascular disease. Oxford University Press, New York, pp 79–100

    Google Scholar 

  38. Htun P, Ito WD, Hoefer IE, Schaper J, Schaper W (1998) Intramyocardial infusion of FGF-1 mimics ischemic preconditioning in pig myocardium. J Mol Cell Cardiol 30:867–877

    Article  CAS  PubMed  Google Scholar 

  39. Baffour R, Berman J, Garb JL, Rhee SW, Kaufman J, Friedmann P (1992) Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J Vasc Surg 16:181–191

    Article  CAS  PubMed  Google Scholar 

  40. Ferrara N, Gerber HP (1999) The vascular endothelial growth factor family. In: Ware JA, Simons M (eds) Angiogenesis and cardiovascular disease. Oxford University Press, New York, pp 101–127

    Google Scholar 

  41. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Helish A, Schaper W (2000) Angiogenesis and arteriogenesis — not yet for prescription. Z Kardiol 89:239–244

    Article  Google Scholar 

  43. Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF (1996) Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb (see comments). Lancet 348:370–374

    Article  CAS  PubMed  Google Scholar 

  44. Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, Isner JM (1998) Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia (see comments). Circulation 97:1114–1123

    Article  CAS  PubMed  Google Scholar 

  45. Isner JM, Baumgartner I, Rauh G, Schainfeld R, Blair R, Manor O, Razvi S, Symes JF (1998) Treatment of thromboangiitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg 28:964–973

    Article  CAS  PubMed  Google Scholar 

  46. Henry TD, Annex BH, Azrin MA, McKendall GR, Willerson JT, Hendel RC, Giordano F, Klein R, Gibson M, Berman DS, Luce CA, McCluskey ER (1999) Final results of the VIVA trial of rhVEGF for human therapeutic angiogenesis. Circulation 100 [Suppl I]:I476

    Google Scholar 

  47. Blumgart HL, Schlesinger MJ, Davis D (1940) Studies on the relation of the clinical manifestations of angina pectoris, coronary thrombosis and myocardial infarction to the pathological findings, with particular reference to the significance of collateral circulation. Am Heart J 19:1–19

    Article  Google Scholar 

  48. Fernandez B, Bueler A, Wolfram S, Kostin S, Espanion G, Franz WM, Nieman H, Doevedans PA, Schaper W, Zimmermann R (2000) Transgenic myocardial overexpression of fibroblast growth factor-1 increases coronary artery density and branching. Circ Res 87:207–213

    Article  CAS  PubMed  Google Scholar 

  49. Thirumurti V, Shou M, Hodge E, Goncalves L, Epstein SE, Lazarous DF, Unger EF (1998) Lack of efficacy of intravenous basic fibroblast growth factor in promoting myocardial angiogenesis. J Am Coll Cardiol 31:54A

    Google Scholar 

  50. Lazarous DF, Scheinowitz M, Shou M, Hodge E, Rajanayagam S, Hunsberger S, Robison WG Jr, Stiber JA, Correa R, Epstein SE et al (1995) Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 91:145–153

    Article  CAS  PubMed  Google Scholar 

  51. Unger EF, Banai S, Shou M, Lazarous DF, Jaklitsch MT, Scheinowitz M, Correa R, Klingbeil C, Epstein SE (1994) Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 266:H1588–H1595

    Google Scholar 

  52. Mack CA, Patel SR, Schwarz EA, Zanzonico P, Hahn RT, Ilercil A, Devereux RB, Goldsmith SJ, Christian TF, Sanborn TA, Kovesdi I, Hackett N, Isom OW, Crystal RG, Rosengart TK (1998) Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 115:168–176; discussion 176–177

    Article  CAS  PubMed  Google Scholar 

  53. Sanborn TA, Tarazona N, Deutsch E, Lee L, Hackett N, El-Sawy T, Crystal RG, Rosengart TK (1999) Percutaneous endocardial gene therapy: in vivo gene transfer and expression. J Am Coll Cardiol 33 [Suppl A]:262A

    Google Scholar 

  54. Kornowski R, Fuchs S, Leon MB, Epstein SE (2000) Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation 101:454–458

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scholz, D., Ziegelhöffer, T., Friedrich, C. (2002). Molecular Biology of Collateral Circulation. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics