Skip to main content

Vascular Endothelium

  • Chapter
Pan Vascular Medicine

Abstract

Following the pioneering discovery by Furchgott and Zawadzki in 1980 that the vascular endothelium produces relaxing factor(s) in rabbit aorta causing vascular relaxation [1], the active role of the endothelium has been extensively explored over the past two decades. The endothelium controls vascular responses to vasoactive hormones by releasing various substances including relaxing factors and contracting factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    CAS  PubMed  Google Scholar 

  2. Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665

    CAS  PubMed  Google Scholar 

  3. Moncada S, Vane JR (1979) The role of prostacyclin in vascular tissue. Fed Proc 38:66–71

    CAS  PubMed  Google Scholar 

  4. Frangos JA, Eskin SG, McIntire LV, Ives CL (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479

    CAS  PubMed  Google Scholar 

  5. Grabowski EF, Jaffe EA, Weksler BB (1985) Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J Lab Clin Med 105:36–43

    CAS  PubMed  Google Scholar 

  6. Berthiaume F, Frangos JA (1992) Flow-induced prostacyclin production is mediated by a pertussis toxin-sensitive G protein. FEBS Lett 308:277–279

    CAS  PubMed  Google Scholar 

  7. Okahara K, Sun B, Kambayashi J (1998) Upregulation of prostacyclin synthesis-related gene expression by shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol 18:1922–1926

    CAS  PubMed  Google Scholar 

  8. Sievi E, Lahteenmaki TA, Alanko J, Vuorinen P, Vapaatalo H (1997) Nitric oxide as a regulator of prostacyclin synthesis in cultured rat heart endothelial cells. Arzneimittelforschung 47:1093–1098

    CAS  PubMed  Google Scholar 

  9. Wang W, Diamond SL (1997) Does elevated nitric oxide production enhance the release of prostacyclin from shear stressed aortic endothelial cells? Biochem Biophys Res Commun 233:748–751

    CAS  PubMed  Google Scholar 

  10. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90:7240–7244

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Hardy P, Abran D, Hou X, Lahaie I, Peri KG, Asselin P, Varma DR, Chemtob S (1998) A major role for prostacyclin in nitric oxide-induced ocular vasorelaxation in the piglet. Circ Res 83:721–729

    CAS  PubMed  Google Scholar 

  12. Radomski MW, Palmer RMJ, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92:639–646

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Subramanian VA, Hernandez Y, Rtack-Goldman K, Grabowski EF, Weksler BB (1986) Prostacyclin production by internal mammary artery as a factor in coronary artery bypass grafts. Surgery 100: 376–383

    CAS  PubMed  Google Scholar 

  14. Oku T, Yamane S, Suma H, Satoh H, Koike R, Sawada Y, Takeuchi A (1990) Comparison of prostacyclin production of human gastroepiploic artery and saphenous vein. Ann Thorac Surg 49:767–770

    CAS  PubMed  Google Scholar 

  15. Chaikhouni A, Crawford FA, Kochel PJ, Olanoff LS, Halushka PV (1986) Human internal mammary artery produces more prostacyclin than saphenous vein.J Thorac Cardiovasc Surg 92:88–91

    CAS  PubMed  Google Scholar 

  16. Wever RMF, Lüscher TF, Cosentino F, Rabelink TJ (1998) Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation 97:108–112

    CAS  PubMed  Google Scholar 

  17. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelial-derived relaxing factor. Nature 327:534–536

    Google Scholar 

  18. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    CAS  PubMed  Google Scholar 

  19. Li H, Förstermann U (2000) Nitric oxide in the pathogenesis of vascular disease. J Pathol 190:244–254

    CAS  PubMed  Google Scholar 

  20. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87:682–685

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718

    CAS  PubMed  Google Scholar 

  22. Pollock JS, Förstermann U, Mitchell JA, Warner TD, Schmidt HHHW, Nakane M, Murad F (1991) Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci USA 88:10480–10484

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Lamas S, Marsden PA, Li GK, Tempst P, Michel T (1992) Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 89:6348–6352

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Marsden PA, Schappert KT, Chen HS, Flowers M, Sundell CL, Wilcox JN, Lamas S, Michel T (1992) Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett 307:287–293

    CAS  PubMed  Google Scholar 

  25. Xie Q-W, Cho H J, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T, Nathan C (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228

    CAS  PubMed  Google Scholar 

  26. Geller DA, Lowenstein CJ, Shapiro RA, Nussler AK, Di Silvio M, Wang SC, Nakayama DK, Simmons RL, Snyder SH, Billiar TR (1993) Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci USA 90:3491–3495

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Andrew PJ, Mayer B (1999) Enzymatic function of nitric oxide synthases. Cardiovasc Res 43:521–531

    CAS  PubMed  Google Scholar 

  28. Forstermann U, Gath I, Schwarz P, Closs EI, Kleinert H (1995) Isoforms of nitric oxide synthase. Properties, cellular distribution and expressional control. Biochem Pharmacol 50:1321–1332

    CAS  PubMed  Google Scholar 

  29. Wever RMF, van Dam T, van Rijn HJ, de Groot F, Rabelink TJ (1997) Tetrahydrobiopterin regulates superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase. Biochem Biophys Res Commun 237:340–344

    CAS  PubMed  Google Scholar 

  30. Schmidt K, Werner ER, Mayer B, Wachter H, Kukovetz WR (1992) Tetrahydrobiopterin-dependent formation of endothelium-derived relaxing factor (nitric oxide) in aortic endothelial cells. Biochem J 281:297–300

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Schmidt K, Weiss G, Wachter H (1993) Pteridine biosynthesis in human endothelial cells. Impact on nitric oxide-mediated formation of cyclic GMP. J Biol Chem 268:1842–1846

    CAS  PubMed  Google Scholar 

  32. Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, Lüscher T, Rabelink T (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 99:41–46

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Forstermann U, Boissel JP, Kleinert H (1998) Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J 12:773–790

    CAS  PubMed  Google Scholar 

  34. Miyahara K, Kawamoto T, Sase K, Yui Y, Toda K, Yang LX, Hattori R, Aoyama T, Yamamoto Y, Doi Y, Ogoshi S, Hashimoto K, Kawai C, Sasayama S, Shizuta Y (1994) Cloning and structural characterization of the human endothelial nitric-oxide-synthase gene. Eur J Biochem 223:719–726

    CAS  PubMed  Google Scholar 

  35. Marsden, PA, Heng HH, Scherer SW, Stewart RJ, Hall AV, Shi XM, Tsui LC, Schappert KT (1993) Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem 268:17478–17488

    CAS  PubMed  Google Scholar 

  36. Lüscher TF, Vanhoutte PM (1990) The endothelium modulator or cardiovascular function. CRC Press, Boca Raton, pp 1–215

    Google Scholar 

  37. Xie QW, Whisnant R, Nathan C (1993) Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers in-ducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med 177:1779–1784

    CAS  PubMed  Google Scholar 

  38. Petros A, Lamb G, Leone A, Moncada S, Bennett D, Vallance P (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28:34–39

    CAS  PubMed  Google Scholar 

  39. Wang Y, Newton DC, Marsden PA (1999) Neuronal NOS: gene structure, mRNA diversity, and functional relevance. Crit Rev Neurobiol 13:21–43

    PubMed  Google Scholar 

  40. Garcia Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC (1996) Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 93:6448–6453

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814

    CAS  PubMed  Google Scholar 

  42. Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, Anderson RG, Michel T (1996) Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem 271: 6518–6522

    CAS  PubMed  Google Scholar 

  43. Liu JW, Hughes TE, Sessa WC (1997) The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study. J Cell Biol 137:1525–1535

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Michel JB, Feron O, Sacks D, Michel T (1997) Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem 272:15583–15586

    CAS  PubMed  Google Scholar 

  45. Sessa WC, Garcia Cardena G, Liu J, Keh A, Pollock JS, Bradley J, Thiru S, Braverman IM, Desai KM (1995) The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. J Biol Chem 270:17641–17644

    CAS  PubMed  Google Scholar 

  46. Prabhakar P, Thatte HS, Goetz RM, Cho MR, Golan DE, Michel T (1998) Receptor-regulated translocation of endothelial nitric-oxide synthase. J Biol Chem 273:27383–27388

    CAS  PubMed  Google Scholar 

  47. Feron O, Saldana F, Michel JB, Michel T (1998) The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem 273: 3125–3128

    CAS  PubMed  Google Scholar 

  48. Rizzo V, Mcintosh DP, Oh P, Schnitzer JE (1998) In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 273:34724–34729

    CAS  PubMed  Google Scholar 

  49. Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ (1999) Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 274:32512–32519

    CAS  PubMed  Google Scholar 

  50. Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ (2000) High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem 275:11278–11283

    CAS  PubMed  Google Scholar 

  51. Rapoport RM, Murad F (1983) Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 52:352–357

    CAS  PubMed  Google Scholar 

  52. Schmidt HHHW, Pollock JS, Nakane M, Gorsky LD, Förstermann U, Murad F (1991) Purification of a soluble isoform of guanylyl cyclase-activating-factor synthase. Proc Natl Acad Sci USA 88:365–369

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Dubey RK, Jackson EK, Lüscher TF (1995) Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensini receptors. J Clin Invest 96:141–149

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Gurjar MV, Sharma RV, Bhalla RC (1999) eNOS gene transfer inhibits smooth muscle cell migration and MMP-2 and MMP-9 activity. Arterioscler Thromb Vasc Biol 19:2871–2877

    CAS  PubMed  Google Scholar 

  56. Shepherd JT, Katusic ZS, Vedernikov Y, Vanhoutte PM (1991) Mechanisms of coronary vasospasm: role of endothelium. J Mol Cell Cardiol 23 [Suppl 1]:125–131

    PubMed  Google Scholar 

  57. Closs EI, Graf P (1999) Cationic amino acid transporters (CATs). Targets for the manipulation of NO-synthase activity? Pharm Bio-technol 12:229–249

    CAS  Google Scholar 

  58. Malandro MS, Kilberg MS (1996) Molecular biology of mammalian amino acid transporters. Annu Rev Biochem 65:305–336

    CAS  PubMed  Google Scholar 

  59. Hosokawa H, Sawamura T, Kobayashi S, Ninomiya H, Miwa S, Masaki T (1997) Cloning and characterization of a brain-specific cationic amino acid transporter. J Biol Chem 272:8717–8722

    CAS  PubMed  Google Scholar 

  60. Kikuta K, Sawamura T, Miwa S, Hashimoto N, Masaki T (1998) High-affinity arginine transport of bovine aortic endothelial cells is impaired by lysophosphatidylcholine. Circ Res 83:1088–1096

    CAS  PubMed  Google Scholar 

  61. Rikitake Y, Hirata K, Kawashima S, Inoue N, Akita H, Kawai Y, Nakagawa Y, Yokoyama M (2000) Inhibition of endothelium-dependent arterial relaxation by oxidized phosphatidylcholine. Atherosclerosis 152:79–87

    CAS  PubMed  Google Scholar 

  62. Tanner FC, Noll G, Boulanger CM, Lüscher TF (1991) Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries. Role of scavenger receptor and endothelium-derived nitric oxide. Circulation 83:2012–2020

    CAS  PubMed  Google Scholar 

  63. Baggio R, Emig FA, Christianson DW, Ash DE, Chakder S, Rattan S (1999) Biochemical and functional profile of a newly developed potent and isozyme-selective arginase inhibitor. J Pharmacol Exp Ther 290:1409–1416

    CAS  PubMed  Google Scholar 

  64. Buga GM, Singh R, Pervin S, Rogers NE, Schmitz DA, Jenkinson CP, Cederbaum SD, Ignarro LJ (1996) Arginase activity in endothelial cells: inhibition by NG-hydroxy-L-arginine during high-output NO production. Am J Physiol 271:H1988–H1998

    Google Scholar 

  65. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74349–353

    Google Scholar 

  66. Xiao Z, Zhang Z, Diamond SL (1997) Shear stress induction of the endothelial nitric oxide synthase gene is calcium-dependent but not calcium-activated. J Cell Physiol 171:205–211

    CAS  PubMed  Google Scholar 

  67. Fisslthaler B, Dimmeler S, Hermann C, Busse R, Fleming I (2000) Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress. Acta Physiol Scand 168:81–88

    CAS  PubMed  Google Scholar 

  68. Gallis B, Corthals GL, Goodlett DR, Ueba H, Kim F, Presnell SR, Figeys D, Harrison DG, Berk BC, Aebersold R, Corson MA (1999) Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidyl-inositol 3-kinase inhibitor LY294002. J Biol Chem 274:30101–30108

    CAS  PubMed  Google Scholar 

  69. Weiner CP, Lizasoain I, Baylis SA, Knowles RG, Charles IG, Moncada S (1994) Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci USA 91:5212–5216

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Goetz RM, Morano I, Calovini T, Studer R, Holtz J (1994) Increased expression of endothelial constitutive nitric oxide synthase in rat aorta during pregnancy. Biochem Biophys Res Commun 205: 905–910

    CAS  PubMed  Google Scholar 

  71. Kleinert H, Wallerath T, Euchenhofer CE, Ihrig-Biedert I, Li H, Förstermann U (1998) Estrogens increase transcription of the human endothelial NO synthase gene: analysis of the transcription factors involved. Hypertension 31:582–588

    CAS  PubMed  Google Scholar 

  72. McNeill AM, Kim N, Duckies SP, Krause DN, Kontos HA (1999) Chronic estrogen treatment increases levels of endothelial nitric oxide synthase protein in rat cerebral microvessels. Stroke 30: 2186–2190

    CAS  PubMed  Google Scholar 

  73. Yang S, Bae L, Zhang L (2000) Estrogen increases eNOS and NOx release in human coronary artery endothelium. J Cardiovasc Pharmacol 36:242–247

    CAS  PubMed  Google Scholar 

  74. Belchetz PE (1994) Hormonal treatment of postmenopausal women. N Engl J Med 330:1062–1071

    CAS  PubMed  Google Scholar 

  75. Arnal JF, Yamin J, Dockery S, Harrison DG (1994) Regulation of endothelial nitric oxide synthase mRNA, protein, and activity during cell growth. Am J Physiol 36:C1381–C1388

    Google Scholar 

  76. Searles CD, Miwa Y, Harrison DG, Ramasamy S (1999) Posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ Res 85:588–595

    CAS  PubMed  Google Scholar 

  77. Laufs U, Liao JK (1998) Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 273:24266–24271

    CAS  PubMed  Google Scholar 

  78. Laufs U, Fata VL, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135

    CAS  PubMed  Google Scholar 

  79. Hernandez-Perera O, Pérez-Sala D, Navarro-Antolin J, Sànchez-Pascuala R, Hernàndez G, Diaz C, Lamas S (1998) Effects of 3-hydroxyl-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest 101:2711–2719

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Yang Z, Kozai T, Van der Loo B, Viswambharan H, Lachat M, Turina MI, Malinski T, Lüscher TF (2000) HMG-CoA reductase inhibition improves endothelial cell function and inhibits smooth muscle cell proliferation in human saphenous veins. J Am Coll Cardiol 36:1691–1697

    CAS  PubMed  Google Scholar 

  81. Scandinavian Simvastatin Survival Study Group (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease Scandinavian Simvastatin Survival Study (4 S). Lancet 344:1383–1389

    Google Scholar 

  82. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 335:1001–1009

    CAS  PubMed  Google Scholar 

  83. The Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) Study Group (1998) Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 339: 1349–1357

    Google Scholar 

  84. Alonso J, Sanchez de Miguel L, Monton M, Casado S, Lopez-Farre A (1997) Endothelial cytosolic proteins bind to the 3′ untranslated region of endothelial nitric oxide synthase mRNA: regulation by tumor necrosis factor alpha. Mol Cell Biol 17:5719–5726

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Rojas A, Romay S, González D, Herrera B, Delgado R, Otero K (2000) Regulation of endothelial nitric oxide synthase expression by albumin-derived advanced glycosylation end products. Circ Res 86:50e–54e

    Google Scholar 

  86. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    CAS  PubMed  Google Scholar 

  87. Koppenol WH (1998) The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic Biol Med 25:385–391

    CAS  PubMed  Google Scholar 

  88. Bloodsworth A, O’Donnel VB, Freeman BA (2000) Nitric oxide regulation of free radical- and enzyme-mediated lipid and lipoprotein oxidation. Arterioscler Thromb Vasc Biol 20:1707–1715

    CAS  PubMed  Google Scholar 

  89. Zalba G, Beaumont FJ, San Jose G, Fortuno A, Fortuno MA, Etayo JC, Diez J (2000) Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension 35:1055–1061

    CAS  PubMed  Google Scholar 

  90. Suzuki H, Swei A, Zweifach BW, Schmid-Schonbein GW (1995) In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats. Hydroethidine microfluorography. Hypertension 25:1083–1089

    CAS  PubMed  Google Scholar 

  91. Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Eberhardt RT, Forgione MA, Cap A, Leopold JA, Rudd MA, Trolliet M, Heydrick S, Stark R, Klings ES, Moldovan NI, Yaghoubi M, Goldschmidt-Clermont PJ, Farber HW, Cohen R, Loscalzo J (2000) Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 106:483–491

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Miller FJ Jr, Gutterman DD, Rios CD, Heistad DD, Davidson BL (1998) Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ Res 29:1298–1305

    Google Scholar 

  94. Givertz MM, Colucci WS (1998) New targets for heart-failure therapy: endothelin, inflammatory cytokines, and oxidative stress. Lancet 352 [Suppl 2]:S134–S138

    Google Scholar 

  95. Minor RLJ, Myers RP, Guerra RJ, Bates JN, Harrison DG (1990) Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest 86:2109–2116

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Mügge A, Elwell JH, Peterson TE, Hofmeyer TG, Heistad DD, Harrison DG (1991) Chronic treatment with polyethylene glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res 69:1293–1300

    PubMed  Google Scholar 

  97. Heitzer T, Just H, Munzel T (1996) Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 94:6–9

    CAS  PubMed  Google Scholar 

  98. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA (1996) Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 97:22–28

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Solzbach U, Hornig B, Jeserich M, Just H (1997) Vitamin C improves endothelial dysfunction of epicardial coronary arteries in hypertensive patients. Circulation 96:1513–1519

    CAS  PubMed  Google Scholar 

  100. Mohazzab KM, Kaminski PM, Wolin MS (1994) NADH oxido-reductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 266:H2568–H2572

    Google Scholar 

  101. Jones SA, O’Donnell VB, Wood JD, Broughton JP, Hughes EJ, Jones OT (1996) Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol 271:H1626–H1634

    Google Scholar 

  102. Griendling K, Ollerenshaw JD, Minieri CA, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    CAS  PubMed  Google Scholar 

  103. Clark RA, Leidal KG, Pearson DW, Nauseef WM (1987) NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. J Biol Chem 262:4065–4074

    CAS  PubMed  Google Scholar 

  104. Amit N, Huu TP, Sourbier P, Marquetty C, Hakim J (1988) Role of cytochrome b-559 in arachidonic acid activation of resting human neutrophils. Biochim Biophys Acta 944:437–443

    CAS  PubMed  Google Scholar 

  105. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H Oxidase: Role in cardiovascular biology and disease. Circ Res 86:494–501

    CAS  PubMed  Google Scholar 

  106. Wattanapitayakul SK, Weinstein DM, Holycross BJ, Bauer JA (2000) Endothelial dysfunction and peroxynitrite formation are early events in angiotensin-induced cardiovascular disorders. FASEB J 14:271–278

    CAS  PubMed  Google Scholar 

  107. Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman B, Griendling K, Harrison D (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers Q IV, Taylor WR, Harrison DG, de Leon H, Wilcox JN, Griendling KK (1997) p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 80:45–51

    CAS  PubMed  Google Scholar 

  109. Bech-Laursen J, Rajagopalan S, Tarpey M, Freeman B, Harrison D (1997) A role of superoxide in angiotensin II, but not catecholamine-induced hypertension. Circulation 95:588–593

    Google Scholar 

  110. Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M (1991) Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 88:10045–10048

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Schnackenberg CG, Welch WJ, Wilcox CS (1998) Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertension 32:59–64

    CAS  PubMed  Google Scholar 

  112. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK (1996) p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 271:23317–23321

    CAS  PubMed  Google Scholar 

  113. Bayraktutan U, Blayney L, Shah AM (2000) Molecular characterization and localization of the NAD(P)H oxidase components gp91-phox and p22-phox in endothelial cells. Arterioscler Thromb Vasc Biol 20:1903–1911

    CAS  PubMed  Google Scholar 

  114. Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R (2000) A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 87:26–32

    CAS  PubMed  Google Scholar 

  115. Cosentino F, Patton S, d’Uscio LV, Werner ER, Werner-Felmayer G, Moreau P, Malinski T, Lüscher TF (1998) Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats. J Clin Invest 101:1530–1537

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Ishii M, Shimizu S, Yamamoto T, Momose K, Kuroiwa Y (1997) Acceleration of oxidative stress-induced endothelial cell death by nitric oxide synthase dysfunction accompanied with decrease in tetrahydrobiopterin content. Life Sci 61:739–747

    CAS  PubMed  Google Scholar 

  117. Cosentino F, Hishikawa K, Katusic ZS, Lüscher TF (1997) High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96:25–28

    CAS  PubMed  Google Scholar 

  118. Tardieu D, Jaeg JP, Deloly A, Corpet DE, Cadet J, Petit CR (2000) The COX-2 inhibitor nimesulide suppresses superoxide and 8-hydroxy-deoxyguanosine formation, and stimulates apoptosis in mucosa during early colonic inflammation in rats. Carcinogenesis 21:973–976

    CAS  PubMed  Google Scholar 

  119. Tschudi M, Richard V, Buhler FR, Lüscher TF (1991) Importance of endothelium-derived nitric oxide in porcine coronary resistance arteries. Am J Physiol 260:H13–H20

    Google Scholar 

  120. Richard V, Tanner FC, Tschudi M, Lüscher TF (1990) Different activation of L-arginine pathway by bradykinin, serotonin, and Clonidine in coronary arteries. Am J Physiol 259:H1433–H439

    Google Scholar 

  121. Brandes RP, Schmitz-Winnenthal FH, Feletou M, Godecke A, Huang PL, Vanhoutte PM, Fleming I, Busse R (2000) An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild-type and endothelial NO synthase knockout mice. Proc Natl Acad Sci USA 97:9747–9752

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Félétou M, Vanhoutte PM (1988) Endothelium-dependent hyperpolarisation of canine coronary smooth muscle. Br J Pharmacol 93:515–524

    PubMed Central  PubMed  Google Scholar 

  123. Shimokawa H, Yasuaake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, Takeshita A (1996) The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28:703–711

    CAS  PubMed  Google Scholar 

  124. Hecker M, Bara AT, Bauersachs J, Busse R (1994) Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol (Lond) 481:407–414

    CAS  Google Scholar 

  125. Randall MD, Alexander SP, Bennett T, Boyd EA, Fry JR, Gardiner SM, Kemp PA, McCulloch AI, Kendall DA (1996) An endogenous cannabinoid as an endothelium-derived vasorelaxant. Biochem Biophys Res Commun 229:114–120

    CAS  PubMed  Google Scholar 

  126. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH (1998) K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396:269–272

    CAS  PubMed  Google Scholar 

  127. Fisslthaler B, Hinsch N, Chataigneau T, Popp R, Kiss L, Busse R, Fleming I (2000) Nifedipine increases cytochrome P4502 C expression and endothelium-derived hyperpolarizing factor-mediated responses in coronary arteries. Hypertension 36:270–275

    CAS  PubMed  Google Scholar 

  128. Popp R, Bauersachs J, Hecker M, Fleming I, Busse R (1996) A transferable, β-naphthoflavone-inducible, hyperpolarizing factor is synthesised by native and cultured porcine coronary endothelial cells. J Physiol (Lond) 497:699–709

    CAS  Google Scholar 

  129. Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R (1999) Cytochrome P450 2 C is an EDHF synthase in coronary arteries. Nature 401:493–497

    CAS  PubMed  Google Scholar 

  130. Vanheel B, Van de Voorde J (1997) Evidence against the involvement of cytochrome P450 metabolites in endothelium-dependent hyperpolarization in the rat main mesenteric artery. J Physiol (Lond) 501:331–341

    CAS  Google Scholar 

  131. Edwards G, Félétou M, Gardener MJ, Thollon C, Vanhoutte PM, Weston AH (1999) Role of gap junctions in the responses to EDHF in rat and guinea-pig small arteries. Br J Pharmacol 128:1788–1794

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Sandow SL, Hill CE (2000) Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circ Res 86:341–346

    CAS  PubMed  Google Scholar 

  133. Hutcheson IR, Chaytor AT, Evans WH, Griffith TM (1999) Nitric oxide-independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication: role of gap junctions and phospholipase A2. Circ Res 84:53–63

    CAS  PubMed  Google Scholar 

  134. Kilpatrick EV, Cocks TM (1994) Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery. Br J Pharmacol 112: 557–565

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Bauersachs J, Popp R, Hecker M, Sauer E, Fleming I, Busse R (1996) Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation 94:3341

    CAS  PubMed  Google Scholar 

  136. Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168:863–870

    CAS  PubMed  Google Scholar 

  137. Stingo AJ, Clavell AL, Heublein DM, Wei CM, Pittelkow MR, Burnett JC Jr (1992) Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol 263:H1318–H1321

    Google Scholar 

  138. Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N, Imura H (1992) Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of “vascular natriuretic peptide system”. J Clin Invest 90:1145–1149

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Leitman DC, Andresen JW, Kuno T, Kamisaki Y, Chang J-K, Murad F (1986) Identification of multiple binding sites for atrial natriuretic factor by affinity cross-linking in cultured endothelial cells. J Biol Chem 261:11650–11655

    CAS  PubMed  Google Scholar 

  140. Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV (1991) Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252: 120–123

    CAS  PubMed  Google Scholar 

  141. Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA, Lewicki JA (1987) Physiological role of silent receptors of atrial natriuretic factor. Science 238:675–678

    CAS  PubMed  Google Scholar 

  142. Suga S, Itoh H, Komatsu Y, Ogawa Y, Hama N, Yoshimasa T, Nakao K (1993) Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells — evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. Endocrinology 133:3038–3041

    CAS  PubMed  Google Scholar 

  143. Nazario B, Hu RM, Pedram A, Prins B, Levin ER (1995) Atrial and brain natriuretic peptides stimulate the production and secretion of C-type natriuretic peptide from bovine aortic endothelial cells. J Clin Invest 95:1151–1157

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Zhang Z, Xiao Z, Diamond SL (1999) Shear stress induction of C-type natriuretic peptide (CNP) in endothelial cells is independent of NO autocrine signaling. Ann Biomed Eng 27:419–426

    CAS  PubMed  Google Scholar 

  145. Okahara K, Kambayashi J, Ohnishi T, Fujiwara Y, Kawasaki T, Monden M (1995) Shear stress induces expression of CNP gene in human endothelial cells. FEBS Lett 373:108–110

    CAS  PubMed  Google Scholar 

  146. Wennberg PW, Miller VM, Rabelink T, Burnett JC Jr (1999) Further attenuation of endothelium-dependent relaxation imparted by natriuretic peptide receptor antagonism. Am J Physiol 277: H1618–H1621

    Google Scholar 

  147. Chen HH, Burnett JC Jr (1998) C-type natriuretic peptide: the endothelial component of the natriuretic peptide system. J Cardiovasc Pharmacol 32 [Suppl 3]:S22–S28

    Google Scholar 

  148. Kohno M, Horio T, Yokokawa K, Kurihara N, Takeda T (1992) C-type natriuretic peptide inhibits thrombin- and angiotensin II-stimulated endothelin release via cyclic guanosine 3′,5′-mono-phosphate. Hypertension 19:320–325

    CAS  PubMed  Google Scholar 

  149. Yamashita J, Itoh H, Ogawa Y, Tamura N, Takaya K, Igaki T, Doi K, Chun TH, Inoue M, Masatsugu K, Nakao K (1997) Opposite regulation of Gax homeobox expression by angiotensin II and C-type natriuretic peptide. Hypertension 29:381–387

    CAS  PubMed  Google Scholar 

  150. Brown J, Chen Q, Hong G (1997) An autocrine system for C-type natriuretic peptide within rat carotid neointima during arterial repair. Am J Physiol 272:H2919–H2931

    Google Scholar 

  151. Doi K, Itoh H, Ikeda T, Hosoda K, Ogawa Y, Igaki T, Yamashita J, Chun TH, Inoue M, Masatsugu K, Matsuda K, Ohmori K, Nakao K (1997) Adenovirus-mediated gene transfer of C-type natriuretic peptide causes G1 growth inhibition of cultured vascular smooth muscle cells. Biochem Biophys Res Commun 239:889–894

    CAS  PubMed  Google Scholar 

  152. Ueno H, Haruno A, Morisaki N, Furuya M, Kangawa K, Takeshita A, Saito Y (1997) Local expression of C-type natriuretic peptide markedly suppresses neointimal formation in rat injured arteries through an autocrine/paracrine. Circulation 96:2272–2279

    CAS  PubMed  Google Scholar 

  153. Kohno M, Yokokawa K, Yasunari K, Kano H, Minami M, Ueda M, Yoshikawa J (1997) Effect of natriuretic peptide family on the oxidized LDL-induced migration of human coronary artery smooth muscle cells. Circ Res 81:585–590

    CAS  PubMed  Google Scholar 

  154. Naruko T, Ueda M, van der Wal AC, van der Loos CM, Itoh H, Nakao K, Becker AE (1996) C-type natriuretic peptide in human coronary atherosclerotic lesions. Circulation 94:3103–3108

    CAS  PubMed  Google Scholar 

  155. Kitamura K, Kangawa K, Kawamoto M, Ichii Y, Nakamura K, Matsuo H, Eto T (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192:553–560

    CAS  PubMed  Google Scholar 

  156. Sugo S, Minamino N, Kangawa K, Miyamoto K, Kitamura K, Sakata J, Eto T, Matsuo H (1994) Endothelial cells actively synthesize and secrete adrenomedullin. Biochem Biophys Res Commun 201:1160–1166

    CAS  PubMed  Google Scholar 

  157. Ishihara T, Kato J, Kitamura K, Katoh F, Fujimoto S, Kangawa K, Eto T (1997) Production of adrenomedullin in human vascular endothelial cells. Life Sci 60:1763–1769

    CAS  PubMed  Google Scholar 

  158. Hayakawa H, Hirata Y, Kakoki M, Suzuki Y, Nishimatsu H, Nagata D, Suzuki E, Kikuchi K, Nagano T, Kangawa K, Matsuo H, Sugimoto T, Omata M (1999) Role of nitric oxide-cGMP pathway in adreno-medullin-induced vasodilation in the rat. Hypertension 33:689–693

    CAS  PubMed  Google Scholar 

  159. Ishizaka Y, Tanaka M, Kitamura K, Kangawa K, Minamimoto N, Matsuo H, Eto T (1994) Adrenomedullin stimulates cyclic AMP formation in rat vascular smooth muscle cells. Biochem Biophys Res Commun 200:642–646

    CAS  PubMed  Google Scholar 

  160. Eguchi S, Hirata Y, Kano H, Sato K, Watanabe Y, Watanabe TX, Nakajima K, Sakakibara S, Marumo F (1994) Specific receptors for adrenomedullin in cultured rat vascular smooth muscle cells. FEBS Lett 340:226–230

    CAS  PubMed  Google Scholar 

  161. Kamitani S, Asakawa M, Shimekake Y, Kuwasako K, Nakahara K, Sakata T (1999) The RAMP2/CRLR complex is a functional adrenomedullin receptor in human endothelial and vascular smooth muscle cells. FEBS Lett 448:111–114

    CAS  PubMed  Google Scholar 

  162. Kohno M, Kano H, Horio T, Yokokawa K, Yasunari K, Takeda T (1995) Inhibition of endothelin production by adrenomedullin in vascular smooth muscle cells. Hypertension 25:1185–1190

    CAS  PubMed  Google Scholar 

  163. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    CAS  PubMed  Google Scholar 

  164. d’Uscio LV, Barton M, Shaw S, Lüscher TF (2000) Endothelin in atherosclerosis: importance of risk factors and therapeutic implications. J Cardiovasc Pharmacol 35 [Suppl 2]:S55–S59

    Google Scholar 

  165. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 86:2863–2867

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Russo D, Minutolo R, Clienti C, De Nicola L, Iodice C, Savino FA, Andreucci VE (1999) Endothelin-1 released by vascular smooth muscle cells enhances vascular responsiveness of rat mesenteric arterial bed exposed to high perfusion flow. Am J Hypertens 12: 1119–1123

    CAS  PubMed  Google Scholar 

  167. Hahn AW, Resink TJ, Scott-Burden T, Powell J, Dohi Y, Buhler FR (1990) Stimulation of endothelin mRNA and secretion in rat vascular smooth muscle cells: a novel autocrine function. Cell Regul 1:649–659

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Xu D, Emoto N, Giaid A, Slaughter C, Kaw S, deWit D, Yanagisawa M (1994) ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 78:473–485

    CAS  PubMed  Google Scholar 

  169. Shimada K, Takahashi M, Tanzawa K (1994) Cloning and functional expression of endothelin-converting enzyme from rat endothelial cells. J Biol Chem 269:18275–18278

    CAS  PubMed  Google Scholar 

  170. Orzechowski HD, Richter CM, Funke-Kaiser H, Kroger B, Schmidt M, Menzel S, Bohnemeier H, Paul M (1997) Evidence of alternative promoters directing isoform-specific expression of human endothelin-converting enzyme-1 mRNA in cultured endothelial cells. J Mol Med 75:512–521

    CAS  PubMed  Google Scholar 

  171. Schweizer A, Valdenaire O, Nelbock P, Deuschle U, Dumas Milne Edwards JB, Stumpf JG, Loffler BM (1997) Human endothelin-converting enzyme (ECE-1): three isoforms with distinct subcellular localizations. Biochem J 328:871–877

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Emoto N, Yanagisawa M (1995) Endothelin-converting enzyme-2 is a membrane-bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum. J Biol Chem 270:15262–15268

    CAS  PubMed  Google Scholar 

  173. Turner AJ, Tanzawa K (1997) Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J 11:355–364

    CAS  PubMed  Google Scholar 

  174. Valdenaire O, Lepailleur-Enouf D, Egidy G, Thouard A, Barret A, Vranckx R, Tougard C, Michel JB (1999) A fourth isoform of endothelin-converting enzyme (ECE-1) is generated from an additional promoter molecular cloning and characterization. Eur J Biochem 264:341–349

    CAS  PubMed  Google Scholar 

  175. Cailler F, Zappulla JP, Boileau G, Crine P (1999) The N-terminal segment of endothelin-converting enzyme (ECE)-1b contains a di-leucine motif that can redirect neprilysin to an intracellular compartment in Madin-Darby canine kidney (MDCK) cells. Biochem J 341:119–126

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Funke-Kaiser H, Bolbrinker J, Theis S, Lemmer J, Richter CM, Paul M, Orzechowski HD (2000) Characterization of the c-specific promoter of the gene encoding human endothelin-converting en-zyme-1 (ECE-1). FEBS Lett 466:310–316

    CAS  PubMed  Google Scholar 

  177. Wagner OF, Christ G, Wojta J, Vierhapper H, Parzer S, Nowotny PJ, Schneider B, Waldhausl W, Binder BR (1992) Polar secretion of endothelin-1 by cultured endothelial cells. J Biol Chem 267: 16066–16068

    CAS  PubMed  Google Scholar 

  178. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348:730–732

    CAS  PubMed  Google Scholar 

  179. Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T (1990) Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348:732–735

    CAS  PubMed  Google Scholar 

  180. Yanagisawa M (1994) The endothelin system. A new target for therapeutic intervention. Circulation 89:1320–1322

    CAS  PubMed  Google Scholar 

  181. Seo B, Oemar BS, Siebenmann R, von Segesser L, Lüscher TF (1994) Both ETA and ETB receptors mediate contraction to endothelin-1 in human blood vessels. Circulation 89:1203–1208

    CAS  PubMed  Google Scholar 

  182. Yang Z, Bauer E, von Segesser L, Stulz P, Turina M, Lüscher TF (1990) Different mobilization of calcium in endothelin-1-induced contractions in human arteries and veins: effects of calcium antagonists. J Cardiovasc Pharmacol 16:654–660

    CAS  PubMed  Google Scholar 

  183. Dohi Y, Lüscher TF (1991) Endothelin-1 in perfused hypertensive resistance arteries: different intra- and extraluminal dysfunction. Hypertension 18:543–549

    CAS  PubMed  Google Scholar 

  184. Nucci GD, Thomas R, D’Orleans-Juste, Antunes E, Walder C, Warner TD, Vane JR (1988) Pressor effects of circulating endothelin are limited by its removal in pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci USA 85:9797–9800

    PubMed Central  PubMed  Google Scholar 

  185. Goto K, Kasuya Y, Matsuki N, Takuwa Y, Kurihara H, Ishikawa T, Kimura S, Yanagisawa M, Masaki T (1989) Endothelin activates the dihydropiridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci USA 86:3915–3918

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Millard SL, Russell JA, Morin FC III, Adolf MA, Gugino SF, Stein-horn RH (1998) cGMP inhibition of endothelin-stimulated inositol phosphate production in the fetal lamb pulmonary artery. Pulm Pharmacol Ther 11:201–204

    CAS  PubMed  Google Scholar 

  187. Yang Z, Richard V, von Segesser L, Bauer E, Stulz P, Turina M, Lüscher TF (1990) Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries. A new mechanism of vasospasm? Circulation 82: 188–195

    CAS  PubMed  Google Scholar 

  188. Watts SW (2000) 5-Hydroxytryptamine-induced potentiation of endothelin-1- and norepinephrine-induced contraction is mitogen-activated protein kinase pathway dependent. Hypertension 35:244–248

    CAS  PubMed  Google Scholar 

  189. Cardillo C, Kilcoyne CM, Cannon RO III, Panza JA (2000) Interactions between nitric oxide and endothelin in the regulation of vascular tone of human resistance vessels in vivo. Hypertension 35:1237–1241

    CAS  PubMed  Google Scholar 

  190. Lüscher TF (1990) Imbalance of endothelium-derived relaxing and contracting factors. A new concept in hypertension? Am J Hypertens 3:317–330

    PubMed  Google Scholar 

  191. Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, Oda H, Kuwaki T, Cao WH, Kamada N et al (1994) Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 368:703–710

    CAS  PubMed  Google Scholar 

  192. Kurihara Y, Kurihara H, Oda H, Maemura K, Nagai R, Ishikawa T, Yazaki Y (1995) Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest 96:293–300

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Clouthier DE, Hosoda K, Richardson JA, Williams SC, Yanagisawa H, Kuwaki T, Kumada M, Hammer RE, Yanagisawa M (1998) Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 125:813–824

    CAS  PubMed  Google Scholar 

  194. Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, Yanagisawa M (1994) Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79:1277–1285

    CAS  PubMed  Google Scholar 

  195. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, Yanagisawa M (1994) Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79:1267–1276

    CAS  PubMed  Google Scholar 

  196. Yanagisawa H, Hammer RE, Richardson JA, Emoto N, Williams SC, Takeda Si, Clouthier DE, Yanagisawa M (2000) Disruption of ECE-1 and ECE-2 reveals a role for endothelin-converting enzyme-2 in murine cardiac development. J Clin Invest 105:1373–11382

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Vanhoutte PM, Lüscher TF, Graser T (1991) Endothelium-dependent contractions. Blood Vessels 28:74–83

    CAS  PubMed  Google Scholar 

  198. Miller VM, Vanhoutte PM (1985) Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxyge-nase. Am J Physiol 248:H432–H437

    Google Scholar 

  199. Katusic ZS, Vanhoutte PM (1986) Anoxic contractions in isolated canine cerebral arteries: contribution of endothelium-derived factors, metabolites of arachidonic acid, and calcium entry. J Cardiovasc Pharmacol 8 [Suppl 8]:S97–S101

    CAS  Google Scholar 

  200. Shirahase H, Usui H, Kurahashi K, Fujiwara M, Fukui K (1988) Endothelium-dependent contraction induced by nicotine in isolated canine basilar artery — possible involvement of a thromboxane A2 (TXA2). Life Sci 42:437–445

    CAS  PubMed  Google Scholar 

  201. Yao K, Tschudi M, Flammer J, Lüscher TF (1991) Endothelium-dependent regulation of vascular tone of the porcine ophthalmic artery. Invest Ophthalmol Vis Sci 32:1791–1798

    CAS  PubMed  Google Scholar 

  202. Lüscher TF, Vanhoutte PM (1986) Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8:344–348

    PubMed  Google Scholar 

  203. Lüscher TF, Yang Z, Diederich D, Buhler FR (1989) Endothelium-dependent vascular responses: effect of hypertension and cyclosporin A. Z Kardiol 78 [Suppl 6]:132–136

    PubMed  Google Scholar 

  204. Kato T, Iwama Y, Okumura K, Hashimoto H, Ito T, Satake T (1990) Prostaglandin H2 may be the endothelium-derived contracting factor released by acetylcholine in the aorta of the rat. Hypertension 15:475–481

    CAS  PubMed  Google Scholar 

  205. Ito T, Kato T, Iwama Y, Muramatsu M, Shimizu K, Asano H, Okumura K, Hashimoto H, Satake T (1991) Prostaglandin H2 as an endothelium-derived contracting factor and its interaction with endothelium-derived nitric oxide. J Hypertens 9:729–736

    CAS  PubMed  Google Scholar 

  206. Nava E, Farre AL, Moreno C, Casado S, Moreau P, Cosentino F, Lüscher TF (1998) Alterations to the nitric oxide pathway in the spontaneously hypertensive rat. J Hypertens 16:609–615

    CAS  PubMed  Google Scholar 

  207. Higashi Y, Oshima T, Ozono R, Matsuura H, Kajiyama G (1997) Aging and severity of hypertension attenuate endothelium-dependent renal vascular relaxation in humans. Hypertension. 30: 252–258

    CAS  PubMed  Google Scholar 

  208. Stewart KG, Zhang Y, Davidge ST (2000) Aging increases PGHS-2-dependent vasoconstriction in rat mesenteric arteries. Hypertension 35:1242–1247

    CAS  PubMed  Google Scholar 

  209. Smith WL, Garavito RM, DeWitt DL (1996) Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 271: 33157–33160

    CAS  PubMed  Google Scholar 

  210. Tesfamariam B, Brown ML, Deykin D, Cohen RA (1990) Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest 85:929–932

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Tesfamariam B, Cohen RA (1992) Role of superoxide anion and endothelium in vasoconstrictor action of prostaglandin endoper-oxide. Am J Physiol 262:H1915–H1919

    Google Scholar 

  212. Heygate KM, Lawrence IG, Bennett MA, Thurston H (1995) Impaired endothelium-dependent relaxation in isolated resistance arteries of spontaneously diabetic rats. Br J Pharmacol 116: 3251–3259

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Yang Z, von Segesser L, Bauer E, Stulz P, Turina M, Lüscher TF (1991) Different activation of the endothelial L-arginine and cyclooxygenase pathway in the human internal mammary artery and saphenous vein. Circ Res 68:52–60

    CAS  PubMed  Google Scholar 

  214. Werner GS, Wiegand V, Kreuzer H (1990) Effect of acetylcholine on arterial and venous grafts and coronary arteries in patients with coronary artery disease. Eur Heart J 11:127–137

    CAS  PubMed  Google Scholar 

  215. Cayatte AJ, Du Y, Oliver-Krasinski J, Lavielle G, Verbeuren TJ, Cohen RA (2000) The thromboxane receptor antagonist S18886 but not aspirin inhibits atherogenesis in apo E-deficient mice: evidence that eicosanoids other than thromboxane contribute to atherosclerosis. Arterioscler Thromb Vasc Biol 20:1724–1728

    CAS  PubMed  Google Scholar 

  216. Costerousse O, Jaspard E, Wei L, Corvol P, Alhenc-Gelas F (1992) The angiotensin I-converting enzyme (kininase II): molecular organization and regulation of its expression in humans. J Cardiovasc Pharmacol 20 [Suppl 9]:S10–S15

    Google Scholar 

  217. Ruschitzka F, Noll G, Lüscher TF (1999) Angiotensin converting enzyme inhibitors and vascular protection in hypertension. J Cardiovasc Pharmacol 34 [Suppl 1]:S3–S12

    Google Scholar 

  218. Dohi Y, Criscione L, Pfeiffer K, Lüscher TF (1994) Angiotensin blockade or calcium antagonists improve endothelial dysfunction in hypertension: studies in perfused mesenteric resistance arteries. J Cardiovasc Pharmacol 24:372–379

    CAS  PubMed  Google Scholar 

  219. Goto K, Fujii K, Onaka U, Abe I, Fujishima M (2000) Angiotensinconverting enzyme inhibitor prevents age-related endothelial dysfunction. Hypertension 36:581–587

    CAS  PubMed  Google Scholar 

  220. Mancini GB, Henry GC, Macaya C, O’Neill BJ, Pucillo AL, Carere RG, Wargovich TJ, Mudra H, Lüscher TF, Klibaner MI, Haber HE, Uprichard AC, Pepine CJ, Pitt B (1996) Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study. Circulation 94:258–265

    CAS  PubMed  Google Scholar 

  221. Burnett JC Jr (1999) Vasopeptidase inhibition: a new concept in blood pressure management. J Hypertens Suppl 17:S37–S43

    Google Scholar 

  222. Robl JA, Sun CQ, Stevenson J, Ryono DE, Simpkins LM, Cimarusti MP, Dejneka T, Slusarchyk WA, Chao S, Stratton L, Misra RN, Bednarz MS, Asaad MM, Cheung HS, Abboa-Offei BE, Smith PL, Mathers PD, Fox M, Schaeffer TR, Seymour AA, Trippodo NC (1997) Dual metalloprotease inhibitors: mercaptoacetyl-based fused heterocyclic dipeptide mimetics as inhibitors of angiotensin-converting enzyme and neutral endopeptidase. J Med Chem 40:1570–1577

    CAS  PubMed  Google Scholar 

  223. Rouleau JL, Pfeffer MA, Stewart DJ, Isaac D, Sestier F, Kerut EK, Porter CB, Proulx G, Qian C, Block AJ for the IMPRESS investigators (2000) Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet 356:615–620

    CAS  PubMed  Google Scholar 

  224. Intengan HD, Schiffrin EL (2000) Vasopeptidase inhibition has potent effects on blood pressure and resistance arteries in stroke-prone spontaneously hypertensive rats. Hypertension 35:1221–1225

    CAS  PubMed  Google Scholar 

  225. Quaschning T, d’Usaio LV, Shaw S, Lüscher TF (2001) Vasopeptidase inhibition exhibits endothelial pretection in salt-induced hypertension. Hypertension 37:1108–1113

    CAS  PubMed  Google Scholar 

  226. Kugiyama K, Sugiyama S, Matsumura T, Ohta Y, Doi H, Yasue H (1996) Suppression of atherosclerotic changes in cholesterol-fed rabbits treated with an oral inhibitor of neutral endopeptidase 24.11 (EC 3.4.24.11). Arterioscler Thromb Vasc Biol 16:1080–1087

    CAS  PubMed  Google Scholar 

  227. Grantham JA, Schirger JA, Wennberg PW, Sandberg S, Heublein DM, Subkowski T, Burnett JC Jr (2000) Modulation of functionally active endothelin-converting enzyme by chronic neutral endopeptidase inhibition in experimental atherosclerosis. Circulation 101:1976–1981

    CAS  PubMed  Google Scholar 

  228. Boulanger C, Lüscher TF (1990) Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 85:587–590

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Spieker LE, Mitrovic V, Noll G, Pacher R, Schulze MR, Muntwyler J, Schalcher C, Kiowski W, Lüscher TF (2000) Acute hemodynamic and neurohumoral effects of selective ET(A) receptor blockade in patients with congestive heart failure. ET 003 Investigators. J Am Coll Cardiol 35:1745–1752

    CAS  PubMed  Google Scholar 

  230. Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A (1997) Cyclooxygenase inhibition restores nitric oxide activity in essential hypertension. Hypertension 29:274–279

    CAS  PubMed  Google Scholar 

  231. Taddei S, Galetta F, Virdis A, Ghiadoni L, Salvetti G, Franzoni F, Giusti C, Salvetti A (2000) Physical activity prevents age-related impairment in nitric oxide availability in elderly athletes. Circulation 101:2896–2901

    CAS  PubMed  Google Scholar 

  232. Lerman A, Edwards BS, Hallett JW, Heublein DM, Sandberg SM, Burnett JC Jr (1991) Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med 325:997–1001

    CAS  PubMed  Google Scholar 

  233. Zeiher AM, Ihling C, Pistorius K, Schachinger V, Schaefer HE (1994) Increased tissue endothelin immunoreactivity in atherosclerotic lesions associated with acute coronary syndromes. Lancet 344: 1405–1406

    CAS  PubMed  Google Scholar 

  234. Barton M, Haudenschild CC, d’Uscio LV, Shaw S, Munter K, Lüscher TF (1998) Endothelin ETA receptor blockade restores NO-mediated endothelial function and inhibits atherosclerosis in apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 95: 14367–14372

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Berndt MC, Phillips DR (1981) Platelet membrane proteins: composition and receptor function. In: Gordon JL (ed) Platelets in biology and pathology. Elsevier/North Holland, Amsterdam, pp 43–74

    Google Scholar 

  236. Yang Z, Stulz P, Von Segesser L, Bauer E, Turina M, Lüscher TF (1991) Different interactions of platelets with arterial and venous coronary bypass vessels. Lancet 337:939–943

    CAS  PubMed  Google Scholar 

  237. Yang Z, Arnet U, Bauer E, Von Segesser L, Siebenmann R, Turina M, Lüscher TF (1994) Thrombin-induced endothelium-dependent inhibition and direct activation of platelet-vessel wall interaction: role of prostacyclin, nitric oxide, and thromboxane A2. Circulation 89:2266–2272

    CAS  PubMed  Google Scholar 

  238. Lüscher TF, Diederich D, Siebenmann R, Lehmann K, Stulz P, Von Segesser L, Yang Z, Turina M, Grädel G, Weber E, Bühler FR (1988) Difference between endothelium-dependent relaxations in arterial and in venous coronary bypass grafts. N Engl J Med 319:462–467

    PubMed  Google Scholar 

  239. Yang Z, Ruschitzka F, Rabelink TJ, Noll G, Julmy F, Joch H, Gafner V, Aleksic I, Althaus U, Lüscher TF (1997) Different effects of thrombin receptor activation on endothelium and smooth muscle cells of human coronary bypass vessels. Implications for venous bypass graft failure. Circulation 95:1870–1876

    CAS  PubMed  Google Scholar 

  240. Becker BF, Heindl B, Kupatt C, Zahler S (2000) Endothelial function and hemostasis. Z Kardiol 89:160–167

    CAS  PubMed  Google Scholar 

  241. Fager G (1995) Thrombin and proliferation of vascular smooth muscle cells. Circ Res 77:645–650

    CAS  PubMed  Google Scholar 

  242. Seasholtz TM, Majumdar M, Kaplan DD, Brown JH (1999) Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circ Res 84:1186–1193

    CAS  PubMed  Google Scholar 

  243. Coughlin SR (1999) How the protease thrombin talks to cells. Proc Natl Acad Sci USA 96:11023–11027

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Vu TKH, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068

    CAS  PubMed  Google Scholar 

  245. Grand RJA, Turnell AS, Grabham PW (1996) Cellular consequences of thrombin-receptor activation. Biochem J 313:353–368

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR (1999) Protease-activated receptor 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 103:879–887

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Connolly AJ, Ishihara H, Kahn ML, Farese RV Jr, Coughlin SR (1996) Role of the thrombin receptor in development and evidence for a second receptor. Nature 381:516–519

    CAS  PubMed  Google Scholar 

  248. Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386:502–506

    CAS  PubMed  Google Scholar 

  249. Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685

    CAS  PubMed  Google Scholar 

  250. Kraiss LW, Kirkman TR, Kohler TR, Zierler B, Clowes AW (1991) Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts. Arterioscler Thromb 11:1184–1852

    Google Scholar 

  251. Kohler TR, Kirkman TR, Kraiss LW, Zierler B, Clowes AW (1991) Increased blood flow inhibits neointimal hyperplasia in endothe-lialized vascular grafts. Circ Res 69:1557–1565

    CAS  PubMed  Google Scholar 

  252. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillation shear stress. Arteriosclerosis 5:293–302

    CAS  PubMed  Google Scholar 

  253. Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feildman C, Stone PH (1993) Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb 13:310–315

    CAS  PubMed  Google Scholar 

  254. Langille BL, O’Donnel F (1986) Reductions in arterial diameter produced by chronic decrease in blood flow are endothelium-dependent. Science 231:405–407

    CAS  PubMed  Google Scholar 

  255. Ohno M, Cooke JP, Dzau VJ, Gibbons GH (1995) Fluid shear stress induces endothelial transforming growth factor beta 1 transcription and production: modulation by potassium channel blockade. I. Clin Invest 95:1363–1369

    CAS  Google Scholar 

  256. Sharma RV, Tan E, Fang S, Gurjar MV, Bhalla RC (1999) NOS gene transfer inhibits expression of cell cycle regulatory molecules in vascular smooth muscle cells. Am J Physiol 276:H1450–H1459

    Google Scholar 

  257. Sato J, Nair K, Hiddinga J, Eberhardt NL, Fitzpatrick LA, Katusic ZS, O’Brien T (2000) eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis. Cardiovasc Res 47:697–706

    CAS  PubMed  Google Scholar 

  258. Tanner FC, Meier P, Greutert H, Champion C, Nabel EG, Lüscher TF (2000) Nitric oxide modulates expression of cell cycle regulatory proteins: a cytostatic strategy for inhibition of human vascular smooth muscle cell proliferation. Circulation 101:1982–1989

    CAS  PubMed  Google Scholar 

  259. Varenne O, Pislaru S, Gillijns H, Van Pelt N, Gerard RD, Zoldhelyi P, Van de Werf F, Collen D, Janssens SP (1998) Local adenovirus-mediated transfer of human endothelial nitric oxide synthase reduces luminal narrowing after coronary angioplasty in pigs. Circulation 98:919–926

    CAS  PubMed  Google Scholar 

  260. Todaka T, Yokoyama C, Yanamoto H, Hashimoto N, Nagata I, Tsukahara T, Hara S, Hatae T, Morishita R, Aoki M, Ogihara T, Kaneda Y, Tanabe T (1999) Gene transfer of human prostacyclin synthase prevents neointimal formation after carotid balloon injury in rats. Stroke 30:419–426

    CAS  PubMed  Google Scholar 

  261. Ferns GAA, Raines EW, Sprugel KH, Motani AS, Reidy MA, Ross R (1991) Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGE Science 253:1129–1132

    CAS  PubMed  Google Scholar 

  262. Yang Z, Oemar BS, Carrel T, Kipfer B, Julmy F, Lüscher TF (1998) Different proliferative properties of smooth muscle cells of human arterial and venous bypass vessels: role of PDGF receptors, mitogen-activated protein kinase, and cyclin-dependent kinase inhibitors. Circulation 97:181–187

    CAS  PubMed  Google Scholar 

  263. Malek AM, Izumo S (1992) Physiological fluid shear stress causes down-regulation of endothelin-1 mRNA in bovine aortic endothelium. Am J Physiol 32:C389–C396

    Google Scholar 

  264. Sharefkin JB, Diamond SL, Eskin SG, McIntire LV, Dieffenbach CW (1991) Fluid flow decreases preproendothelin mRNA levels and suppresses endothelin-1 peptide release in cultured human endothelial cells. J Vasc Surg 14:1–9

    CAS  PubMed  Google Scholar 

  265. Dubin D, Pratt RE, Cooke JP, Dzau VJ (1989) Endothelin, a potent vasoconstrictor, is a vascular smooth muscle mitogen. J Vasc Med Biol 1:13–17

    Google Scholar 

  266. Malek AM, Gibbons GH, Dzau VJ, Izumo S (1993) Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium. J Clin Invest 92:2013–2021

    CAS  PubMed Central  PubMed  Google Scholar 

  267. Yang Z, Krasnici N, Lüscher TF (1999) Endothelin-1 potentiates human smooth muscle cell growth to PDGF: effects of ET-A and ET-B receptor blockade. Circulation 100:5–8

    CAS  PubMed  Google Scholar 

  268. McKenna CJ, Burke SE, Opgenorth TJ, Padley RJ, Camrud LJ, Camrud AR, Johnson J, Carlson PJ, Lerman A, Holmes DR Jr, Schwartz RS (1998) Selective ET(A) receptor antagonism reduces neointimal hyperplasia in a porcine coronary stent model. Circulation 97:2551–2556

    CAS  PubMed  Google Scholar 

  269. Burke SE, Lubbers NL, Gagne GD, Wessale JL, Dayton BD, Wegner CD, Opgenorth TJ (1997) Selective antagonism of the ET(A) receptor reduces neointimal hyperplasia after balloon-induced vascular injury in pigs. J Cardiovasc Pharmacol 30:33–41

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, Z., Lüscher, T.F. (2002). Vascular Endothelium. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics