Skip to main content
  • 620 Accesses

Abstract

Transcellular transport mechanisms are responsible for the transport of free amino acids through epithelial cells and are mainly present in cells of the intestinal mucosa and the renal tubules. Most amino acids are transported via a sodium-dependent transport system. However, sodium-independent transport and passive diffusion exist. Transmembrane transporters may be specific for single amino acids (e.g. histidine, glycine) or for groups of amino acids (e.g. dibasic amino acids, dibasic amino acids and cystine, neutral amino acids or dicarboxylic amino acids).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinne R. Biochemical aspects of tubular transport. In: Gonick HC, Buckalew VM (eds) Renal tubular disorders. 1985, Marcel Dekker, New York, pp 1–45

    Google Scholar 

  2. Palacin M, Goodyer P, Nunes V, Gasparini P. Cystinuria. In: Scriver CR, Beaudet AL, Sly WS, Valle D. The metabolic and molecular bases of inherited disease. 2001, McGraw-Hill, New York, pp 4909–4928

    Google Scholar 

  3. Calonge MJ, Gasparini P, Chillaron J, Chillaron M, Galluci M, Rousaud F, Zelante L, Testar X, Dallapicola B, Di Silverio F, Barcelo P, Estivill X, Zorzano A, Nunes, V, Palacin M. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet 1994, 6:420–425

    Article  PubMed  CAS  Google Scholar 

  4. Endsley JK, Phillips III JA, Hruska KA, Denneberg T, Carlson J, George AL Jr. Genomic organization of a human cystine transporter gene (SLC3A1) and identification of novel mutations causing cystinuria. Kidney Int 1997, 51:1893–1890

    Article  PubMed  CAS  Google Scholar 

  5. Egoshi KI, Akakura K, Kodama T, Ito H. Identification of five novel SLC3A1 (rBAT) gene mutations in Japanese cystinuria. Kidney Int 2000, 57:25–32

    Article  PubMed  CAS  Google Scholar 

  6. Bisceglia L, Calonge MJ, Totaro A, Feliubadalo L, Melchionda S, Garcia J, Testar X, Galluci M, Ponzone A, Zelante L, Zorzano A, Estivill X, Gasparini P, Nunes V, Palacin M. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1. Am J Hum Genet 1997, 60:611–616

    PubMed  CAS  Google Scholar 

  7. Byrd DJ, Lind M, Brodehl J. Diagnostic and genetic studies in 43 patients with classical cystinuria. J Clin Invest 1991, 37:68–73

    CAS  Google Scholar 

  8. Brodehl J. Renal hyperaminoaciduria. In: Pediatric Kidney Disease. Edelmann CM (ed), Little Brown and Co, Boston, 1992, pp 1811–1840

    Google Scholar 

  9. Rosenberg LE, Durant JL, Holland MJ. Intestinal absorption and renal excretion of cystine and cysteine in cystinuria. N Engl J Med 1965, 273:1239–1245

    Article  PubMed  CAS  Google Scholar 

  10. Langen H, Kietzell D, Byrd D, Arslan-Kirchner M, Vester U, Stuhrmann M, Dork T, Saar K, Reis A, Schmidtke J, Brodehl J. Renal polyamine excretion, tubular amino acid reabsorption and molecular genetics in cystinuria. Pediatr Nephrol 2000, 14:376–384

    Article  PubMed  CAS  Google Scholar 

  11. Barbey F, Joly D, Rieu P, Mejean A, Daudon M, Jungers P. Medical treatment of cystinuria: critical reappraisal of long-term results. J Urol 2000, 163:1419–1423

    Article  PubMed  CAS  Google Scholar 

  12. Smith CP, Weremowicz S, Kanai Y. Assignment of the gene coding for the human high-affinity glutamate transporter EAAC1 to 9p24: potential role in dicarboxylic aminoaciduria and neurodegenerative disorder. Genomics 1994, 20:335–336

    Article  PubMed  CAS  Google Scholar 

  13. Teijema HL, Van Geldern HH, Giesberts MAH, Laurent de Angulo MSL. Dicarboxylic aminoaciduria: an inborn error of glutamic and aspartate transport with metabolic implications, in combination with a hyperprolinemia. Metabolism 1974, 23:115–123

    Article  PubMed  CAS  Google Scholar 

  14. Swarna M, Rao DN, Reddy PR Dicarboxylic aminoaciduria associated with mental retardation. Hum Genet 1989, 82:299–300

    Article  PubMed  CAS  Google Scholar 

  15. Kamoun P, Parvy P, Rabier J. Dicarboxylic aminoaciduria. J Inher Metab Dis 1994, 17:758

    Article  PubMed  CAS  Google Scholar 

  16. Levy HL. Hartnup disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D. The metabolic and molecular bases of inherited disease. 2001,McGraw-Hill, New York, pp 4957–4966

    Google Scholar 

  17. Symula DJ, Shedlovsky A, Guillery EN, Dove WF. A candidate mouse model for Hartnup disorder deficient in neutral amino acid transport. Mam Genome 1997 8:102–107

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schweitzer-Krantz, S. (2003). Defective Transcellular Transport of Amino Acids. In: Blau, N., Duran, M., Blaskovics, M.E., Gibson, K.M. (eds) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55878-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55878-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62709-5

  • Online ISBN: 978-3-642-55878-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics