Skip to main content

Advertisement

Log in

A candidate mouse model for Hartnup Disorder deficient in neutral amino acid transport

  • Original Contribution
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The mutant mouse strain HPH2 (hyperphenylalaninemia) was isolated after N-ethyl-N-nitrosourea (ENU) mutagenesis on the basis of delayed plasma clearance of an injected load of phenylalanine. Animals homozygous for the recessive hph2 mutation excrete elevated concentrations of many of the neutral amino acids in the urine, while plasma concentrations of these amino acids are normal. In contrast, mutant homozygotes excrete normal levels of glucose and phosphorus. These data suggest an amino acid transport defect in the mutant, confirmed in a small reduction in normalized values of 14C-labeled glutamine uptake by kidney cortex brush border membrane vesicles (BBMV). The hyperaminoaciduria pattern is very similar to that of Hartnup Disorder, a human amino acid transport defect. A subset of Hartnup Disorder cases also show niacin deficiency symptoms, which are thought to be multifactorially determined. Similarly, the HPH2 mouse exhibits a niacin-reversible syndrome that is modified by diet and by genetic background. Thus, HPH2 provides a candidate mouse model for the study of Hartnup Disorder, an amino acid transport deficiency and a multifactorial disease in the human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson PS, Sactor B (1975) The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J Biol Chem 250, 6032–6039

    PubMed  CAS  Google Scholar 

  • Asatoor AM, Craske J, London DR, Milne MD (1963) Indole production in Hartnup Disorder. Lancet 1, 126

    Article  PubMed  CAS  Google Scholar 

  • Baron DN, Dent CE, Haris H, Hart EW, Jepson JB (1956) Hereditary pellagra-like skin rash with temporary cerebellar ataxia, constant renal aminoaciduria, and other bizarre biochemical features. Lancet 2, 421–428

    Article  Google Scholar 

  • Bergeron M, Gougoux A (1989) The renal Fanconi syndrome. In The Metabolic Basis of Inherited Disease, CR Scriver, AL Beaudet, WS Sly, D Valle, eds. (New York: McGraw-Hill) pp. 2569–2580

    Google Scholar 

  • Chesney, R (1995) Iminoglycinuria, In The Metabolic and Molecular Bases of Inherited Disease, CR Scriver, AL Beaudet, WS Sly, D Valle, eds. (New York: McGraw-Hill) pp. 3643–3654

    Google Scholar 

  • Christensen, HN (1989) Distinguishing amino acid transport systems of a given cell or tissue. Methods Enzymol 173, 576–616

    Article  PubMed  CAS  Google Scholar 

  • Christensen, HN (1990) Role of amino acid transport and counter transport in nutrition and metabolism. Physiol Rev 70, 43–77

    PubMed  CAS  Google Scholar 

  • Curriden, S, Englesberg, E (1981) Inhibition of growth of proline-requiring Chinese hamster ovary cells (CHO-K1) resulting from antagonism by A system amino acids. J Cell Physiol 106, 245–252

    Article  PubMed  CAS  Google Scholar 

  • Dillehay, AL, Bass, R, Englesberg, E (1980) Inhibition of growth cells in culture by L-phenylalanine as a model system for the analysis of phenylketonuria. I. Amino acid antagonism and the inhibition of protein synthesis. J Cell Physiol 102, 395–405

    Article  PubMed  CAS  Google Scholar 

  • Evered, DF (1956) The excretion of amino acids by the human. Biochem J 62, 416–427

    PubMed  CAS  Google Scholar 

  • Evers, J, Murer, H, Kinne, R (1976) Phenylalanine uptake in isolated renal brush border vesicles. Biochim Biophys Acta 426, 598–615

    Article  PubMed  CAS  Google Scholar 

  • Forbush, B (1983) Assay of Na, K-ATPase in plasma membrane preparations: increasing the permeability of membrane vesicles using sodium dodecyl sulfate buffered with bovine serum albumin. Anal Biochem 128, 159–163

    Article  PubMed  CAS  Google Scholar 

  • George, SG, Kenny, AJ (1973) Studies on the enzymology of purified preparations of brush border from rabbit kidney. Biochem J 134, 43–57

    PubMed  CAS  Google Scholar 

  • Groth, U, Rosenberg, LE (1972) Transport of dibasic amino acids, cystine, and tryptophan by cultured human fibroblasts: absence of a defect in cystinuria and Hartnup disease. J Clin Invest 51, 2130–2142

    Article  PubMed  CAS  Google Scholar 

  • Guillery, EN, Karniski, LP, Matthews, MS, Robillar, JE (1994) Maturation of proximal tubule Na+/H+ antiporter activity in sheep during transition from fetus to newborn. Am J Physiol 267, F537-F545

    PubMed  CAS  Google Scholar 

  • Halvorsen, S, Hygstedt, O, Jagenburg, R, Sjaastad, O (1969) Cellular transport of L-histidine in Hartnup disease. J Clin Invest 48, 1552–1559

    Article  PubMed  CAS  Google Scholar 

  • Heinz, E, Weinstein, AM (1984) The overshoot phenomenon in cotransport. Biochim Biophys Acta 776, 83–91

    Article  PubMed  CAS  Google Scholar 

  • Kinsella, JL, Aronson, PS (1980) Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol 238, F461-F469

    PubMed  CAS  Google Scholar 

  • Lemieux, B, Auray-Blais, C, Giguere, R, Shapcott, D, Scriver, CR (1988) Newborn urine screening experience with over one million infants in Quebec Network of Genetic Medicine. J Inherited Metab Dis 11, 45–55

    Article  PubMed  CAS  Google Scholar 

  • Les, EP (1966) Husbandry. In Biology of the Laboratory Mouse, EL Green, ed. (New York: McGraw-Hill) pp. 29–37

    Google Scholar 

  • Levy, HL (1995) Hartnup Disorder, In The Metabolic and Molecular Bases of Inherited Disease, CR Scriver, AL Beaudet, WS Sly, D Valle, eds. (New York: McGraw-Hill) pp. 3629–3642

    Google Scholar 

  • Lowry, OH, Rosenbaugh, NH, Farr, AL, Randall, RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265–275

    PubMed  CAS  Google Scholar 

  • McDonald, JD, Bode, VC (1988) Hyperphenylalaninemia in the hph-1 mouse mutant. Pediatr Res 23, 63–67

    Article  PubMed  CAS  Google Scholar 

  • McDonald, JD, Bode, VC, Dove, WF, Shedlovsky, A (1990) Pah hph-5: a mouse mutant deficiency in phenylalanine hydroxylase. Proc Natl Acad Sci USA 87, 1965–1967

    Article  PubMed  CAS  Google Scholar 

  • McKean, CM, Boggs, DE, Peterson, NA (1968) The influence of high phenylalanine and tyrosine on the concentrations of essential amino acids in brain. J Neurochem 15, 235–241

    Article  PubMed  CAS  Google Scholar 

  • Mircheff, AK, Kippen, I, Hirayama, B, Wright, EM (1982) Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles. J Membr Biol 64, 113–122

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, EG, Vedso, S, Zimmmerman-Nielsen, C (1966) Hartnup disease in three siblings. Dan Med Bull 13, 155–161

    PubMed  CAS  Google Scholar 

  • Olendorf, WH (1973) Saturation of blood brain barrier transport of amino acid in phenylketonuria. Arch Neurol 28, 45–48

    Google Scholar 

  • Oxender, DL, Christensen, HN (1963) Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem 238 3686–3699

    PubMed  CAS  Google Scholar 

  • Peterson, GL (1977) A simplification of the protein assay method of Lowery et al. which is more generally applicable. Anal Biochem 83, 346–356

    Article  PubMed  CAS  Google Scholar 

  • Pomeroy, J, Efron, ML, Dayman, J, Hoefnagal, D (1968) Hartnup Disease in a New England family. N Engl J Med 278, 1214–1216

    Article  PubMed  CAS  Google Scholar 

  • Pontoglio, M, Barra, J, Hadchouel, M, Doyen, A, Kress, C, Bach, JP, Babinet, C (1996) Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 84, 575–585

    Article  PubMed  CAS  Google Scholar 

  • Reizer, J, Reizer, A, Saier, MH (1994) A functional superfamily of sodium/ solute symporters. Biochim Biophys Acta 1197, 133–166

    PubMed  CAS  Google Scholar 

  • Scriver, CR (1965) A genetic modification of intestinal and renal transport of certain neutral alpha-amino acids. N Engl J Med 273, 530–532

    PubMed  CAS  Google Scholar 

  • Scriver, CR (1988) Nutrient-gene interactions: the gene is not the disease and vice-versa. Am J Clin Nutr 48, 1505–1509

    PubMed  CAS  Google Scholar 

  • Scriver, CR, Mahon, B, Levy, HL, Clow, CL, Reade, TM, Kronick, J, Lemieux, B, Laberge, C (1987) The Hartnup phenotype: Mendelian transport disorder, multifactorial disease. Am J Hum Genet 40, 401–412

    PubMed  CAS  Google Scholar 

  • Seakins, JWT (1977) Hartnup disease. In Metabolic and Deficiency diseases of the Nervous System, PJ Vinken, GW Bruyn, eds. (Amsterdam, North-Holland) pp. 149–170

    Google Scholar 

  • Segal, S, Thier, SO (1995) Cystinuria. In Metabolic and Molecular Bases of Inherited Disease, CR Scriver, AL Beaudet, WS Sly, D Valle, eds. (New York: McGraw-Hill), pp. 3581–3602

    Google Scholar 

  • Shaw, KNF, Redlich, D, Wright, SW, Jepson, JB (1960) Dependence of urinary indole excretion in Hartnup disease upon gut flora. Fed Proc 19, 194

    Google Scholar 

  • Shedlovsky, A, McDonald, JD, Symula, D, Dove, WF (1993) Mouse models of phenylketonuria. Genetics 134, 1205–1210

    PubMed  CAS  Google Scholar 

  • Shih, VE, Bixby, EM, Alpers, DH, Bartsocas, CS, Thier, SO (1971) Studies of intestinal transport defect in Hartnup disease. Gastroenterology 61, part 1, 445–453

    PubMed  CAS  Google Scholar 

  • Silbernagl, S (1992) Amino acids and oligopeptides, In The Kidney: Physiology and Pathophysiology, 2nd ed., DW Seldin, G Giebisch, eds. (New York: Raven Press, Ltd.) pp. 2889–2920

    Google Scholar 

  • Simell, O (1995) Lysinuric protein intolerance and other cationic aminoacidurias, In The Metabolic and Molecular Bases of Inherited Disease, CR Scriver, AL Beaudet, WS Sly, D Valle, eds. (New York: McGraw-Hill) pp. 3603–3628

    Google Scholar 

  • Slocum, RH, Cummings, JG (1991) Amino acid analysis of physiological samples. In Diagnostic Human Biochemical Genetics, FA Hommes, ed. (New York: Wiley-Liss) pp. 87–126

    Google Scholar 

  • Symula, DJ, Shedlovsky, A, Dove, WF (1996). Genetic mapping of hph2, a mutation affecting amino acid transport in mouse. Mamm Genome, 8, 98–101

    Article  Google Scholar 

  • Tada, K, Morikawa, T, Arakawa, T (1966) Tryptophan load and uptake of tryptophan by leukocytes in Hartnup disease. Tohoku J Exp Med 90, 337–346

    Article  PubMed  CAS  Google Scholar 

  • Tarlow, MJ, Seakins, WT, Lloyd, JK, Cheng, B, Thomas, AJ (1972) Absorption of amino acids and peptides in a child with a variant of Hartnup Disease and coexistent coeliac disease. Arch Dis Child 47, 798–803

    Article  PubMed  CAS  Google Scholar 

  • Wilcken, B, Yu, JS, Brown, DA (1977) Natural history of Hartnup disease. Arch Dis Child 52, 38–40

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Symula, D.J., Shedlovsky, A., Guillery, E.N. et al. A candidate mouse model for Hartnup Disorder deficient in neutral amino acid transport. Mammalian Genome 8, 102–107 (1997). https://doi.org/10.1007/s003359900367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900367

Keywords

Navigation