Skip to main content

Moving Toward Energy Security and Sustainability in 2050 by Reconfiguring Biofuel Production

  • Chapter
  • First Online:
Convergence of Food Security, Energy Security and Sustainable Agriculture

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 67))

Abstract

To achieve energy security and sustainability by 2050 requires reconfiguring biofuel production both by building on current infrastructure and existing technology and also by making substantial improvements and changes in the feedstocks used, the process technologies applied, and the fuels produced. This chapter describes a biofuel production system that would combine proven processes with promising technologies that are currently under development and that has the potential to provide energy security by 2050. This system is envisioned as a self-contained, community-based system with integrated crossover bioprocessing units to convert biomass into third generation drop-in biofuels and bio-derived chemicals. These systems could be developed on sites near new feedstocks or built onto existing first- or second generation biofuel facilities. The system would not only produce biofuels from both biomass and CO2 but also produce high-value coproducts and transform wastewater effluent into acceptable irrigation water. The design would produce energy in an environmentally, socially, and economically sustainable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arizona State University (2014) Cyanobacterial diesel: tubes in the desert. http://biofuels.asu.edu/tubes.shtml. Cited 3 Mar 2014

  • Carlson TR, Vispute TP, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1(5):397–400

    Article  CAS  PubMed  Google Scholar 

  • Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed Engl 46(38):7164–7183

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Dauenhauer PJ, Dreyer BJ, Degenstein NJ, Schmidt LD (2007) Millisecond reforming of solid biomass for sustainable fuels. Angew Chem Int Ed Engl 46(31):5864–5867

    Article  CAS  PubMed  Google Scholar 

  • den Boer E, Aarnink S, Kleiner F, Pagenkopf J (2013) Zero emissions tru13.4841.21cks. CE Delft. Commissioned by: The International Council for Clean Transportation (ICCT). Publication code: 13.4841.21

    Google Scholar 

  • Ethanol Producer Magazine (2014) Ethanol plants. http://ethanolproducer.com/plants/map/. Cited 9 Mar 2014.

  • Federal Register (2010) Regulation of fuels and fuel additives: changes to renewable fuels program, Final Rule 40 CFR 80; 75 FR 14670. pp 14670–14904. http://federalregister.gov/a/2010-3851. Cited 9 Mar 2014

  • Gallagher BJ (2011) The economics of producing biodiesel from algae. Renew Energ 36:158–162

    Article  CAS  Google Scholar 

  • Halfmann C, Gu L, Zhou R (2014) Engineering cyanobacteria for production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem 16(6):3175–3185

    Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huber GW, Dale BE (2009) Grassoline at the pump. Sci Am 301(1):52–59

    Article  CAS  PubMed  Google Scholar 

  • Hughes SR, Sterner DE, Bischoff KM, Hector RE, Dowd PF, Qureshi N, Bang SS, Grynaviski N, Chakrabarty T, Johnson ET, Dien BS, Mertens JA, Caughey RJ, Liu S, Butt TR, LaBaer J, Cotta MA, Rich JO (2008) Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system. Plasmid 61(1):22–38

    Article  PubMed  Google Scholar 

  • Hughes SR, Moser BR, Harmsen AJ, Robinson S, Bischoff KM, Jones MA, Pinkelman R, Bang SS, Tasaki K, Doll KM, Qureshi N, Liu S, Saha BC, Jackson JS, Cotta MA, Rich JO, Caimi P (2011) Production of Candida antarctica lipase B gene open reading frame using automated PCR gene assembly protocol on robotic workcell and expression in an ethanologenic yeast for use as resin-bound biocatalyst in biodiesel production. J Lab Autom 16(1):17–37

    Article  CAS  PubMed  Google Scholar 

  • Knothe G (2010) Biodiesel and renewable diesel: a comparison. Progr Energ Combust Sci 36:364–373

    Article  CAS  Google Scholar 

  • Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:27. doi:10.1186/1754-6834-4-27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gärtner CA, Dumesic JA (2008) Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322(5900):417–421. doi:10.1126/science.1159210

    Article  CAS  PubMed  Google Scholar 

  • Laluce C, Schenberg ACG, Gallardo JCM, Coradello LFC, Pombeiro-Sponchiado SR (2012) Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol − a review. Appl Biochem Biotechnol 166(8):1908–1926. doi:10.1007/s12010-012-9619-6

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19(6):556–563

    Article  CAS  PubMed  Google Scholar 

  • Lestari S, Mäki-Arvela P, Beltramini J, Lu GQ, Murzin DY (2009) Transforming triglycerides and fatty acids into biofuels. ChemSusChem 2(12):1109–1119

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, de Brito Cruz CH (2010) Make way for ethanol. Science 330(6008):1176

    Article  CAS  PubMed  Google Scholar 

  • Machado IM, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162(1):50–6. doi:10.1016/j.jbiotec.2012.03.005. Epub 2012 Mar 16

    Article  CAS  PubMed  Google Scholar 

  • National Biodiesel Board (2014) America’s advanced biofuel. Production, production statistics. http://www.biodiesel.org/production/production-statistics. Cited 9 Mar 2014

  • National Science Foundation (2008) Breaking the chemical and engineering barriers to lignocellulosic biofuels: next generation hydrocarbon, biorefineries. http://www.ecs.umass.edu/biofuels/Images/RoadmapFinal.pdf. Cited 9 Mar 2014

  • Parmara A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102(22):10163–10172

    Article  Google Scholar 

  • Perlack RD, Stokes BJ (2011) Biomass supply for a bioenergy and bioproducts industry. ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN, 227p

    Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC, A joint study sponsored by US Department of Energy and US Department of Agriculture (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501, doi: 10.1128/EC.00364-09. PMCID: PMC2863401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Regalbuto JR (2009) Cellulosic biofuels – got gasoline? Science 325(5942):822–824

    Article  PubMed  Google Scholar 

  • Renewable Fuels Association (2014a) The industry, biorefinery locations. http://www.ethanolrfa.org/bio-refinery-locations/. Cited 8 Mar 2014

  • Renewable Fuels Association (2014b) The Industry, Industry statistics http://www.ethanolrfa.org/pages/statistics. Cited 8 Mar 2014

  • Renewable Fuels Association (2014c) World fuel ethanol production. http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production. Cited 8 Mar 2014

  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325(5938):270–271. doi:10.1126/science.1177970

    Article  CAS  PubMed  Google Scholar 

  • United States Department of Energy, Energy Efficiency and Renewable Energy (2012) Replacing the whole barrel. DOE/EE-0762

    Google Scholar 

  • United States Energy Information Administration (2014) Biofuels production, internal energy statistics – biorenewables: biodiesel. http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=79&pid=81&aid=1&cid=regions&syid=2006&eyid=2010&unit=TBPD. Cited 9 Mar 2014

  • United States Environmental Protection Agency (2014) Fuel and fuel additives, E15 (a blend of gasoline and ethanol). http://www.epa.gov/otaq/regs/fuels/additive/e15/. Cited 9 Mar 2014

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799

    Article  CAS  PubMed  Google Scholar 

  • Wilson J (2011) U.S. corn-surplus cut as ethanol use climbs; smaller global crop projected. http://www.bloomberg.com/news/2011-02-09/u-s-corn-surplus-cut-on-higher-ethanol-output-smaller- world-crop-is-seen.html. Cited 9 Mar 2014

  • Zhou J, Li Y (2010) Engineering cyanobacteria for fuels and chemicals production. Protein Cell 1(3):207–210. doi:10.1007/s13238-010-0043-9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hughes, S.R., Moser, B.R., Gibbons, W.R. (2014). Moving Toward Energy Security and Sustainability in 2050 by Reconfiguring Biofuel Production. In: Songstad, D., Hatfield, J., Tomes, D. (eds) Convergence of Food Security, Energy Security and Sustainable Agriculture. Biotechnology in Agriculture and Forestry, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55262-5_2

Download citation

Publish with us

Policies and ethics