Skip to main content

Nutritional and Antioxidant Properties of the White Desert Truffle Tirmania nivea (Zubaidi)

  • Chapter
  • First Online:
Desert Truffles

Part of the book series: Soil Biology ((SOILBIOL,volume 38))

Abstract

Tirmania nivea (Pezizaceae) is a desert truffle which inhabits arid and semiarid alkaline soils in many countries of the Middle East and around the Mediterranean basin. A precious food commodity, it is nutritious, rich in protein, carbohydrate, and fiber. The very limited available scientific literature indicates that T. nivea possesses antioxidant properties comparable to those found in other higher fungi (truffles and mushrooms) and superior to many antioxidant-rich foods. This chapter summarizes findings using several methods to estimate the antioxidant–antiradical activities (i.e., FRAP, DPPH, ABTS-TEAC, FC). Total antioxidant capacity, total reducing power, metal-chelating ability, and anti-lipid peroxidation are reported. Antioxidant constituents were also evaluated. Many of the findings are presented for the first time. Samples of T. nivea from different sources/origins exhibit variable but high antioxidant activity in all methods used. Phenolic compounds, free and bound, are present at relatively high levels and contribute significantly towards the antioxidant properties of T. nivea. Condensed tannins are present in appreciable levels. Ascorbic acid and carotenoids play a minor role in the antioxidant activity of T. nivea due to their low concentration. T. nivea contains primary and secondary antioxidants that exert their capacity through several mechanisms including direct radical scavenging and transition metal chelating. Ecological importance of the antioxidant activity of T. nivea is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethyl-benzothiazoline-6-sulphonic acid)

DNPH:

2,4-Dinitrophenylhydrazine

DP:

Degree of polymerization

DPPH:

Diphenylpicrylhydrazyl

EC50 :

Effective concentration which gives 50 % radical inhibition activity

EDTA:

Ethylenediamine tetra acetic acid

ET:

Electron transfer

FC:

Folin–Ciocalteu reagent (or method)

FRAP:

Ferric reducing/antioxidant power

GAE:

Gallic acid equivalent

HAT:

Hydrogen atom transfer

MDA:

Malondialdehyde

NO:

Nitric oxide

PVPP:

Polyvinyl polypyrrolidone

TBARS:

Thiobarbituric acid reactive substances

TEAC:

Trolox equivalent antioxidant capacity

TPTZ:

2,4,6-Tripyridyl-s-triazine

VCEAC:

Vitamin C equivalent antioxidant capacity

References

  • Aaby K, Hvattum E, Skrede G (2004) Analysis of flavonoids and other phenolic compounds using high-performance liquid chromatography with coulometric array detection: relationship to antioxidant activity. J Agr Food Chem 52:4595–4603

    Article  CAS  Google Scholar 

  • Abdallah YM, Hassan YM, Mossa JS, Al-Yahya MA (1997) Studies on the nutritive value of Saudi truffles and possibility of their preservation by canning. Proc Arab Conf Food Sci Technol 2:369–376

    Google Scholar 

  • Abdulla N, Ismail SM, Aminudin N, Shuib AS, Lan BF (2011) Evaluation of selected culinary-medicinal mushrooms for antioxidants and ACE inhibitory activities. Evid base Compl Alternative Med 464238:12 p. doi:10.1155/2012

    Google Scholar 

  • Ahmed AA, Mohamed MA, Hami MA (1981) Libyan truffles (Terfezia boudieri Chatin), chemical composition and toxicity. J Food Sci 46:927–929

    Article  CAS  Google Scholar 

  • Akata I, Ergonul B, Kalyoncu F (2011) Chemical compositions and antioxidant activities of 16 wild edible mushroom species grown in Anatolia. Int J Pharmacol 8:134–138

    Google Scholar 

  • Al-Alawi NAM (2009) Food habits related with feeding the truffle fangs and effect of some of their treatments on experimental rats. M.Sc. Thesis. Umm Al-Qura University, Education Collage For Home Economy, Department of Nutrition & Food Science, Makkah. Saudi Arabia

    Google Scholar 

  • Al-Laith AAA (2010) Antioxidant components and antioxidant/antiradical activities of desert truffle (Tirmania nivea) from various Middle Eastern origins. J Food Compos Anal 23:15–22

    Article  CAS  Google Scholar 

  • Al-Naama NM, Ewaze JO, Nema JH (1988) Chemical constituents of Iraqi truffles. Iraqi J Agr Sci 6:51–56

    Google Scholar 

  • Al-Rahmah AN (2001) Truffle of desert and jungles. King Saud University Publications, Riyadh, Saudi Arabia (In Arabic)

    Google Scholar 

  • Al-Rawi AA, Taha A (2010) Chemical study for three Iraqi truffles types. Al-Anbar J Agr Sci 8:33–41 (In Arabic)

    Google Scholar 

  • Al-Sheikh AM, Trappe JM (1983) Desert truffles: the genus Tirmania. Trans Br Mycol Soc 81:83–90

    Article  Google Scholar 

  • Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, Berker KI, Özyurt D (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12:1496–1547

    Article  CAS  PubMed  Google Scholar 

  • Awameh MS, Al-Sheikh A (1979) Characteristics and ascospore germination of white kame (Tirmania nivea and T. pinoyi). Ann Phytopathol 11:223–229

    Google Scholar 

  • Badalyan SM (2003) Edible and medicinal higher Basidiomycetes mushrooms as a source of natural antioxidants. Int J Med Mushrooms 5:153–162

    Article  CAS  Google Scholar 

  • Barros L, Dueñas M, Ferreira ICFR, Baptista P, Santos-Buelga C (2011) Phenolic compounds profile in wild edible greens from Portugal obtained by HPLC-DADESI/MS. Food Chem 127:169–173

    Article  CAS  Google Scholar 

  • Barros L, Ferreira MJ, Queiros B, Ferreira ICFR, Baptista P (2007) Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103:413–419

    Article  CAS  Google Scholar 

  • Benzie IFF, Strain JJ (1996) The Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Boda RH, Wani AH, Zargar MA, Ganie BA, Wani BA, Ganie SA (2012) Nutritional values and antioxidant potential of some edible mushrooms of Kashmir valley. Pak J Pharm Sci 25:623–627

    CAS  PubMed  Google Scholar 

  • Bokhary HA (1987) Desert truffles “al-kamah” of the Kingdom of Saudi Arabia. I. Occurrence identification and distribution. Arab Gulf J Sci Res 5:245–255

    Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  • Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, Willey C, Senoo H, Umezono U, Sanada C, Barikmo I, Berhe N, Willett WC, Phillips KM, David R, Jacobs DV Jr, Blomhoff R (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 9:3

    Article  PubMed  Google Scholar 

  • Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • Chang MJ, Collins JL, Baily JW, Coffey DL (1994) Tannins related to cultivar, maturity, dehulling, and heating. J Food Sci 59:1034–1036

    Article  CAS  Google Scholar 

  • Cheung LM, Cheung PCK, Ooi VEC (2003) Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81:249–255

    Article  CAS  Google Scholar 

  • Diez J, Manjon JL, Martin F (2002) Molecular phylogeny of the mycorrhizal desert truffles (Terfezia and Tirmania), host specificity and edaphic tolerance. Mycologia 94:247–259

    Article  CAS  PubMed  Google Scholar 

  • Dubost NJ, Ou B, Beelman RB (2007) Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem 105:717–735

    Article  Google Scholar 

  • Eberhardt MK (2001) Reactive oxygen metabolites: chemistry and medical consequences. CRC Press, Boca Raton, FL

    Google Scholar 

  • El-Kholy H (1989) Genetical and physiological studies on truffles. Ph.D. Thesis, Faculty of Agric., Cairo University, Egypt

    Google Scholar 

  • Elmastas M, Isildak O, Turkekul I, Temur N (2007) Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compos Anal 20:337–345

    Article  CAS  Google Scholar 

  • Falleh H, Ksouri R, Boulaaba M, Guyot S, Abdelly C, Christian Magné C (2012) Phenolic nature, occurrence and polymerization degree as marker of environmental adaptation in the edible halophyte Mesembryanthemum edule. S Afr J Bot 79:117–124

    Article  CAS  Google Scholar 

  • FAO/IAEA (2000) Quantification of tannins in tree foliage, a laboratory manual, animal production and health sub-programme. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

    Google Scholar 

  • Farmer EE, Davoine C (2007) Reactive electrophile species. Curr Opin Plant Biol 10:380–386

    Article  CAS  PubMed  Google Scholar 

  • Ferreira ICFR, Barros L, Abreu RMV (2009) Antioxidant in wild mushrooms. Curr Med Chem 16:1543–1560

    Article  CAS  PubMed  Google Scholar 

  • Fraga CG, Oteiza PI (2002) Iron toxicity and antioxidant nutrients. Toxicology 180:23–32

    Article  CAS  PubMed  Google Scholar 

  • Gaafar AM, Yossef HE, Ibrahim H (2010) Protective effects of mushroom and their ethyl extract on aging compared with L-carnitine. Int J Nutr Metab 2:63–69

    Google Scholar 

  • Gezer K, Duru ME, Kivrak I, Turkoglu A, Mercan N, Turkoglu H, Gulcan S (2006) Free-radical scavenging capacity and antimicrobial activity of wild edible mushroom from Turkey. Afr J Biotechnol 5:1924–1928

    Google Scholar 

  • Gould KS, Lister C (2005) Flavonoid functions in plants, Ch. 8. In: Oyvind MA, Markham KR (eds) Flavonoids chemistry, biochemistry and applications. CRC Press, Boca Raton, FL, pp 397–441

    Chapter  Google Scholar 

  • Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 1998(46):1887–1892

    Article  Google Scholar 

  • Halliwell B, Gutteridge JM, Aruoma OI (1987) The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    Article  CAS  PubMed  Google Scholar 

  • Halvorsen BL, Carlsen MH, Phillips KM, Bohn SK, Holte K, Jacobs DR Jr, Blomhoff R (2006) Content of redox-active compounds (i.e., antioxidants) in foods consumed in the United States. Am J Clin Nutr 84:95–135

    CAS  PubMed  Google Scholar 

  • Hatier J-HB, Gould KS (2009) Anthocyanin function in vegetative organs. In: Gould KS, Davies KM, Winfield C (eds) Anthocyanins: biosynthesis, functions, and applications. Springer, New York, NY, pp 1–20

    Google Scholar 

  • Hernández I, Alegre L, Breusegem FV, Munné- Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14(3):125–132

    Article  PubMed  Google Scholar 

  • Huang SJ, Huang LC, Chen CC, Mau JL (1999) Antioxidant properties of Agaricus blazei. In: Broderick A, Nair T (eds) Proceedings of the third international conference on mushroom biology and mushroom products, Sydney, Australia, pp. 266–274.

    Google Scholar 

  • Hussain G, Al-Ruqaie IM (1999) Occurrence, chemical composition, and nutritional value of truffle: an overview. Pak J Biol Sci 2:510–514

    Article  Google Scholar 

  • Jabbur JS (1995) The Bedouins and the desert: aspects of nomadic life in the Arab East. State University of New York Press, Albany, NY

    Google Scholar 

  • Jamali S, Banihashemi Z (2012) Fungi associated with ascocarps of desert truffles from different parts of Iran. J Crop Protect 1:41–47

    Google Scholar 

  • Kahkonenn MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  Google Scholar 

  • Kahkonen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycones. J Agric Food Chem 51:628–633

    Article  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  PubMed  Google Scholar 

  • Keleş A, Koca İ, Gençcelep H (2011) Antioxidant properties of wild edible mushrooms. J Food Process Technol 2:130. doi:10.4172/2157-7110.1000130

    Google Scholar 

  • Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, Abdelly C (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C R Biol 331:865–873

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Jian S, Lian P, Mau J (2008) Antioxidant properties of extracts from a white mutant of the mushroom Hypsizygus marmoreus. J Food Compos Anal 21:116–124

    Article  CAS  Google Scholar 

  • Lopes GKB, Herbert M, Schulman HM, Hermes-Lima M (1999) Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim Biophys Acta 1472:142–152

    Article  CAS  PubMed  Google Scholar 

  • Mandeel Q, Al-Laith AAA (2007) Ethnomycological aspects of the desert truffle among native Bahraini and non-Bahraini peoples of the Kingdom of Bahrain. J Ethnopharmacol 110:118–129

    Article  PubMed  Google Scholar 

  • Mattila P, Sounpa K, Piironen V (2000) Functional properties of edible mushrooms. J Nutr 16:7–8

    Google Scholar 

  • Mau JL, Chang CN, Huang SJ, Chen CC (2004) Antioxidant properties of methanolic extracts from Grifola frondosa. Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87:111–118

    Article  CAS  Google Scholar 

  • Mau JL, Lin HC, Chen CC (2002) Antioxidant properties of several medicinal mushrooms. J Agric Food Chem 50:6072–6077

    Article  CAS  PubMed  Google Scholar 

  • Meir S, Kanner J, Akiri B, Hadas SP (1995) Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J Agric Food Chem 43:1813–1819

    Article  CAS  Google Scholar 

  • Murcia MA, Matinez M, Jimanez AM, Veera AM, Honrubia M, Parras P (2002) Antioxidant activity of edible fungi (truffles and mushrooms): losses during industrial processing. J Food Protect 65:1614–1622

    CAS  Google Scholar 

  • Murcia MA et al (2013) Antioxidant properties: Terfezia, Picoa. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (eds) Desert truffles: phylogeny, Physiology, Distribution and Domestication. Springer, Heidelberg

    Google Scholar 

  • Murthy KNC, Vanitha A, Rajesha R, Swamy MM, Sowmya PR, Ravishankar GA (2005) In vivo antioxidant activity of carotenoids from Dunaliella salina - a green microalga. Life Sci 76:1381–1390

    Article  CAS  Google Scholar 

  • Nagy M, Grancai D (1996) Colorimetric determination of flavanones in Propolis. Pharmazie 51:100–101

    CAS  Google Scholar 

  • Oszmianski J, Ramos T, Bourzeix M (1988) Fractionation of phenolic compounds in Red Wine. Am J Enol Vitic 39:259–262

    CAS  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Pal J, Ganguly S, Tahsin KS, Acharya K (2010) In vitro free radical scavenging activity of wild edible mushroom, Pleurotus squarrosulus (Mont.) Singer. Id. J Exp Biol 47:1210–1218

    Google Scholar 

  • Patel S (2012) Food, health and agricultural importance of truffles: a review of current scientific literature. Curr Trend Biotechnol Pharm 6:15–27

    CAS  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Wu XL, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  PubMed  Google Scholar 

  • Puntel RL, Nogueira CW, Rocha JBT (2005) Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochem Res 30:225–235

    Article  CAS  PubMed  Google Scholar 

  • Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SMN, Somasundaram R (2006) Antioxidant activity of indigenous edible mushrooms. J Agric Food Chem 54:9764–9772

    Article  CAS  PubMed  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22:375–383

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Deshmukh PS, Saxena DC (1998) Role of antioxidant systems in wheat genotypes tolerance to water Stress. Biol Plantarum 41:387–394

    Article  CAS  Google Scholar 

  • Samanta A, Das G, Sanjoy Kumar Das SK (2011) Roles of flavonoids in plants. Int J Pharm Sci Technol 6:12–35

    Google Scholar 

  • Sawaya WN, Al-Shalhat A, Al-Sogair A, Al-Muhammad A (1985) Chemical composition and nutritive value of truffles of Saudi Arabia. J Food Sci 50:450–453

    Article  CAS  Google Scholar 

  • Schofield P, Mbugua DM, Pell AN (2001) Analysis of condensed tannins: a review. Anim Feed Sci Technol 91:21–40

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Sen S, Chakraborty R (2011) The role of antioxidants in human health. In: Silvana A, Hepel M (eds) Oxidative stress: diagnostics, prevention, and therapy (ACS symposium series). American Chemical Society, Washington DC, pp 1–37

    Chapter  Google Scholar 

  • Shamekh SS, Ahmed AA, El-Mabsout YE (1985) Effect of various methods of preservation on microbial load, vitamins and fatty acids of Libyan truffles. In: Hamdan, LY, El-Nawawy A, Mameesh (eds) Advances in food industries development in the Arab World, A Proceedings. Kuwait Institute for Scientific Research and Kuwait Foundation for Advancement of Science, pp. 261–270

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:Article ID 217037. doi:10.1155/2012/217037

    Google Scholar 

  • Shinde MN, Deshmukh SR (2012) Comparative study for antioxidant activity of cold and hot water extracts of Pleurotus sajor-caju and Pleurotus florida. www.biomedscidirect.com/journalfiles/IJBMRF2012737.doc. Accessed 1 Nov 2012

  • Song W, Van Griensven LJLD (2008) Pro- and antioxidative properties of medicinal mushroom extracts. Int J Med Mushrooms 10:315–324

    Article  Google Scholar 

  • Sreejayan N, Rao MN (1997) Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49:105–107

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Zou B, Dong X-Q, Chang Y, Du J, Chen J-Y, Li C-M (2012) Antioxidant activity of Persimmon tannin fractions with different degree of polymerization in vitro and in vivo. Food Sci. http://124.205.222.100/Jwk_spkx/EN/

  • Tharayil N, Suseela V, Daniella J, Triebwasser DJ, Caroline M, Preston CM, Patrick D, Gerard PD, Dukes JS (2011) Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive. New Phytol 191:132–145

    Article  CAS  PubMed  Google Scholar 

  • Toor PK, Savage GP, Lister CE (2006) Seasonal variation in antioxidant composition of greenhouse grown tomatoes. J Food Compos Anal 19:1–10

    Article  CAS  Google Scholar 

  • Trappe JM (1979) The order, families and genera of hypogeous Ascomycotina Truffles and their relatives. Mycotaxon 9:297–340

    Google Scholar 

  • Tsai PJ, Tsai TH, Yu CH, Ho SC (2007) Comparison of NO-scavenging and NO-suppressing activities of different herbal teas with those of green tea. Food Chem 103:181–187

    Article  CAS  Google Scholar 

  • Turgeman T, Asher Ben J, Roth-Bejerano N, Kagan-Zur V, Kapulnik Y, Sitrit Y (2011) Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions. Mycorrhiza 21:623–630

    Article  CAS  PubMed  Google Scholar 

  • Valentão P, Lopes G, Valente M, Barbosa P, Andrade PB, Silva BM, Baptista P, Seabra RM (2005) Quantification of nine organic acids in wild mushrooms. J Agric Food Chem 53:3626–3630

    Article  PubMed  Google Scholar 

  • Velisek J, Cejpek K (2011) Pigments of higher fungi: a review. Czech J Food Sci 29:87–102

    CAS  Google Scholar 

  • Vidović SS, Mujić IO, Zeković ZP, Lepojević ZD, Tumbas VT, Mujić AI (2010) Antioxidant properties of selected boletus mushrooms. Food Biophys 5:49–58

    Article  Google Scholar 

  • Wang S, Marcone MF (2011) The biochemistry and biological properties of the world’s most expensive underground edible mushroom: truffles. Food Res Int 44:2567–2581

    Article  CAS  Google Scholar 

  • Waterhouse A (2002) Folin-Ciocalteau micro method for total phenol in wine. http://waterhouse.ucdavis.edu/faqs/folin-ciocalteau-micro-method-for-total-phenol-in-wine

  • Wie S, Van Griensven LJLD (2008) Pro- and antioxidative properties of medicinal mushroom extracts. Int J Med Mushrooms 10:315–324

    Article  Google Scholar 

  • Witkowska AM, Zujko ME, Mirończuk-Chodakowska I (2011) Comparative study of wild edible mushrooms as sources of antioxidants. Int J Med Mushrooms 13:335–341

    Article  CAS  PubMed  Google Scholar 

  • Yagi K (1998) Simple assay for the level of total lipid peroxides in serum or plasma. Free Rad Antiox Protoc 108:101–106

    Article  CAS  Google Scholar 

  • Yang JH, Lin HC, Mau JL (2002) Antioxidant properties of several commercial mushrooms. Food Chem 77:229–235

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Department of Biology, College of Science, University of Bahrain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Ameer A. Al-Laith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Al-Laith, A.A.A. (2014). Nutritional and Antioxidant Properties of the White Desert Truffle Tirmania nivea (Zubaidi). In: Kagan-Zur, V., Roth-Bejerano, N., Sitrit, Y., Morte, A. (eds) Desert Truffles. Soil Biology, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40096-4_18

Download citation

Publish with us

Policies and ethics