Skip to main content

Communication in Engineered Quantum Networks

  • Chapter
  • First Online:
Quantum State Transfer and Network Engineering

Part of the book series: Quantum Science and Technology ((QST))

Abstract

We review the engineering of passive quantum networks for performing fundamental quantum communications tasks, such as the transfer, routing, and splitting of signals that are associated with quantum states. After an introduction to fundamental concepts and notions, the problem of quantum state transfer is discussed for networks of various physical and logical topologies. The discussion is cast in terms of a unified theoretical formalism, which is perfectly suited to addressing the problem in the context of various physical realizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a d-dimensional system the unit of quantum information is the qudit.

  2. 2.

    The energy separation of successive orbitals in a node is assumed to be much larger than the coupling constants between adjacent nodes, as well as than the typical energy scales of various excitation mechanisms.

  3. 3.

    It should be sufficiently large with respect to decoherence mechanisms, but at the same time sufficiently small with respect to other system parameters e.g., the energy separation between successive orbitals, so that the dynamics are restricted to equivalent orbitals only.

  4. 4.

    In a classical setting, this can be achieved by means of the so-called internet-protocol (IP) addresses. As the message arrives at each node, the corresponding device checks the destination address contained in the message to see if it matches its own address. If the two addresses match the device processes the message, otherwise it does nothing. Clearly, no addressing is required in a PP topology since any data transmitted from one node is intended for the other node.

  5. 5.

    For instance, if the network is viewed as part of a larger fault-tolerant quantum-information processor, the probability of errors at the end of the transfer must be below ≈10−4 [1].

  6. 6.

    For the sake of simplicity in Eq. (2.30) we assume that the labels of the source and the destination nodes are successive. This is not important for the present formalism, but in general one can always relabel the sites in a given network so that the permutation is of the form (2.30).

  7. 7.

    For more general mappings, one has to relax the constraint of the evolution operator being a permutation (e.g., see [13]).

  8. 8.

    A closed cycle is a permutation or sub-permutation, which cannot be decomposed further.

  9. 9.

    Clearly, the labelling of the basis states in \(\mathbb{B}_{j}\) is to some extent ambiguous. One may consider any ordering for which Eq. (2.33) yields a complete set of eigenstates of \(\hat{\mathcal{P}}_{j}\). In this case, the ambiguity is unimportant, and does not affect our approach.

  10. 10.

    Thereby the notation (2, 3) means that starting from the original site ordering of the sites {1, 2, 3, 4}, the second site is replaced by the third and the third site by the second.

  11. 11.

    We have simplified the notation relative to the previous section, but the overall approach remains the same.

  12. 12.

    We focus on the case of Hamiltonians with non-degenerate spectrum. The case of degenerate spectrum can be treated similarly and leads to NN-type Hamiltonians with vanishing couplings i.e., to a broken network and thus QST from the first to the last site is impossible.

  13. 13.

    Recall here that, in view of the previous discussion, it is sufficient to consider the transformation of the basis states for our purposes.

  14. 14.

    In the same fashion (i.e., by setting U j, ξ j, ξ) one can formally describe the Pauli principle, which does not allow two electrons with the same state, to occupy the same site.

  15. 15.

    As long as we are interested in networks that are insensitive to different degrees of freedom, the subspaces \(\mathbb{H}_{2}^{(<)}\) and \(\mathbb{H}_{2}^{(>)}\) are equivalent, and the case of s 1 > s 2 is covered by the present discussion on the case s 1 < s 2.

  16. 16.

    By contrast to passive networks of logical bus topology where the state is transferred successively to different destination nodes, here the transfer pertains to one of the two available output nodes, and the choice is performed in a controlled manner.

  17. 17.

    As we have seen, the main effect of the unperturbed Hamiltonians \(\hat{\mathcal{H}}_{k}^{(0)}\) is the introduction of an accumulated phase at the end of the transfer which, however, is fixed and known in the absence of disorder and other imperfections. Hence, for the time being we focus on the interaction part of the Hamiltonian.

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  2. A.B. Kuklov, B.V. Svistunov, Phys. Rev. Lett. 90, 100401 (2003)

    Article  ADS  Google Scholar 

  3. L.M. Duan, E. Demler, M.D. Lukin, Phys. Rev. Lett. 91, 090402 (2003)

    Article  ADS  Google Scholar 

  4. S.R. Clark, C.M. Alves, D. Jaksch, New J. Phys. 7, 124 (2005)

    Article  ADS  Google Scholar 

  5. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, UK, 1999)

    Google Scholar 

  6. P. Ciccarelli, P. Faulkner, Networking Foundations: Technology Fundamentals for IT Success (Sybex, San Francisco, 2004)

    Google Scholar 

  7. S. Steinke, Network Tutorial (CMP Books, San Francisco, 2003)

    Google Scholar 

  8. T. Brougham, G.M. Nikolopoulos, I. Jex, Phys. Rev. A 80, 052325 (2009)

    Article  ADS  Google Scholar 

  9. S. Bose, Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  10. A. Kay, Phys. Rev. A 84, 022337 (2011)

    Article  ADS  Google Scholar 

  11. G.M. Nikolopoulos, Phys. Rev. A 87, 042311 (2013)

    Article  ADS  Google Scholar 

  12. V. Kostak, G.M. Nikolopoulos, I. Jex, Phys. Rev. A 75, 042319 (2007)

    Article  ADS  Google Scholar 

  13. T. Brougham, G.M. Nikolopoulos, I. Jex, Phys. Rev. A 83, 022323 (2011)

    Article  ADS  Google Scholar 

  14. P. Törmä, S. Stenholm, I. Jex, Phys. Rev. A 52, 4853 (1995)

    Article  ADS  Google Scholar 

  15. G.M. Nikolopoulos, D. Petrosyan, P. Lambropoulos, J. Phys.: Condens. Matter 16, 4991 (2004)

    Article  ADS  Google Scholar 

  16. Z. Bialynicka-Birula, I. Bialynicka-Birula, J.H. Eberly, B.W. Shore, Phys. Rev. A 16, 2048 (1977)

    Article  ADS  Google Scholar 

  17. R.J. Cook, B.W. Shore, Phys. Rev. A 20, 539 (1979)

    Article  ADS  Google Scholar 

  18. J.H. Eberly, B.W. Shore, Z. Bialynicka-Birula, I. Bialynicka-Birula, Phys. Rev. A 16, 2038 (1977)

    Article  ADS  Google Scholar 

  19. M. Christandl, N. Datta, A. Ekert, A.J. Landahl, Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  20. R. Gordon, Opt. Lett. 29, 2752 (2004)

    Article  ADS  Google Scholar 

  21. M.B. Plenio, J. Hartley, J. Eisert, New J. Phys. 6(1), 36 (2004)

    Article  ADS  Google Scholar 

  22. G.M. Nikolopoulos, D. Petrosyan, P. Lambropoulos, Europhys. Lett. 65, 297 (2004)

    Article  ADS  Google Scholar 

  23. A. Kay, M. Ericsson, New J. Phys. 7, 143 (2005)

    Article  ADS  Google Scholar 

  24. S. Yang, Z. Song, C. Sun, Eur. Phys. J. B 52, 377 (2006)

    Article  ADS  Google Scholar 

  25. A. Kay, Phys. Rev. Lett. 98, 010501 (2007)

    Article  ADS  Google Scholar 

  26. H.L. Haselgrove, Phys. Rev. A 72, 062326 (2005)

    Article  ADS  Google Scholar 

  27. P. Kurzyński, A. Wójcik, Phys. Rev. A 83, 062315 (2011)

    Article  ADS  Google Scholar 

  28. S. Bose, Contemp Phys. 48, 13 (2007)

    Article  ADS  Google Scholar 

  29. M.H. Yung, S. Bose, Phys. Rev. A 71, 032310 (2005)

    Article  ADS  Google Scholar 

  30. P. Karbach, J. Stolze, Phys. Rev. A 72, 030301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Kay, Phys. Rev. A 73, 032306 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  32. C. Albanese, M. Christands, N. Datta, A. Ekert, Phys. Rev. Lett. 93, 230502 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Shi, Y. Li, Z. Song, C.P. Sun, Phys. Rev. A 71, 032309 (2005)

    Article  ADS  Google Scholar 

  34. X.Q. Xi, J.B. Gong, T. Zhang, R.H. Yue, W.M. Liu, Eur. Phys. J. D 50, 193 (2008)

    Article  ADS  Google Scholar 

  35. M.H. Yung, Phys. Rev. A 74, 030303(R) (2006)

    Google Scholar 

  36. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  37. D. Petrosyan, B. Schmidt, J.R. Anglin, M. Fleischhauer, Phys. Rev. A 76, 033606 (2007)

    Article  ADS  Google Scholar 

  38. A.J. Daley, A. Kantian, H.P. Büchler, P. Zoller, K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J.H. Denschlag, in AIP Conference Proceedings, vol. 869, ed. by C. Roos, H. Häffner, R. Blatt (2006), vol. 869, p. 212

    Google Scholar 

  39. J.H. Denschlag, A.J. Daley, in Proceedings of the International School of Physics “Enrico Fermi”, vol. 164, ed. by M. Inguscio, W. Ketterle, C. Salomon (2007), vol. 164, p. 677

    Google Scholar 

  40. D. Petrosyan, G.M. Nikolopoulos, P. Lambropoulos, Phys. Rev. A 81, 042307 (2010)

    Article  ADS  Google Scholar 

  41. A. Yariv, P. Yue, Photonics: Optical Electronics in Modern Communications (Oxford University, New York, 2006)

    Google Scholar 

  42. N. Dagli, G. Snider, J. Waldman, E. Hu, J. Appl. Phys. 69, 1047 (1991)

    Article  ADS  Google Scholar 

  43. J.A. del Alamo, C.C. Eugster, Appl. Phys. Lett. 56, 78 (1990)

    Article  ADS  Google Scholar 

  44. S. Fan, P.R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Phys. Rev. Lett. 80, 960 (1998)

    Article  ADS  Google Scholar 

  45. G.M. Nikolopoulos, Phys. Rev. Lett. 101, 200502 (2008)

    Article  ADS  Google Scholar 

  46. B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990)

    Google Scholar 

  47. Y. Li, Z. Song, C.P. Sun, Commun. Theor. Phys. 48, 445 (2007)

    Article  ADS  Google Scholar 

  48. P.J. Pemberton-Ross, A. Kay, Phys. Rev. Lett. 106, 020503 (2011)

    Article  ADS  Google Scholar 

  49. I. D’Amico, B.W. Lovett, T.P. Spiller, Phys. Rev. A 76, 030302(R) (2007)

    Google Scholar 

  50. D. Zueco, F. Galve, S. Kohler, P. Hänggi, Phys. Rev. A 80, 042303 (2009)

    Article  ADS  Google Scholar 

  51. M.I. Makin, J.H. Cole, C.D. Hill, A.D. Greentree, Phys. Rev. Lett. 108, 017207 (2012)

    Article  ADS  Google Scholar 

  52. T. Tufarelli, V. Giovannetti, Phys. Rev. A 79(2), 022313 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  53. V. Karimipour, M.S. Rad, M. Asoudeh, Phys. Rev. A 85, 010302 (2012)

    Article  ADS  Google Scholar 

  54. F.A.A. El-Orany, M.R.B. Wahiddin, Journal of Physics B: Atomic Mol Opt Phys 43, 085502 (2010)

    Article  ADS  Google Scholar 

  55. G.M. Nikolopoulos, A. Hoskovec, I. Jex, Phys. Rev. A 85, 062319 (2012)

    Article  ADS  Google Scholar 

  56. L. Banchi, T.J.G. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, Phys. Rev. A 82, 052321 (2010)

    Article  ADS  Google Scholar 

  57. L. Banchi, A. Bayat, P. Verrucchi, S. Bose, Phys. Rev. Lett. 106, 140501 (2011)

    Article  ADS  Google Scholar 

  58. M. Avellino, A.J. Fisher, S. Bose, Phys. Rev. A 74, 012321 (2006)

    Article  ADS  Google Scholar 

  59. G. Gualdi, V. Kostak, I. Marzoli, P. Tombesi, Phys. Rev. A 78, 022325 (2008)

    Article  ADS  Google Scholar 

  60. G. Burkard, D. Loss, D.P. DiVincenzo, Phys. Rev. B 59, 2070 (1999)

    Article  ADS  Google Scholar 

  61. S. Longhi, Phys. Rev. B 82, 041106 (2010)

    Article  ADS  Google Scholar 

  62. M. Bellec, G.M. Nikolopoulos, S. Tzortzakis, Opt. Lett. 37, 4504 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

I. J. received funding from MSM 6840770039, RVO 68407700 and GACR 13-33906S. A. H. was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS13/217/OHK4/3T/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios M. Nikolopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nikolopoulos, G.M., Brougham, T., Hoskovec, A., Jex, I. (2014). Communication in Engineered Quantum Networks. In: Nikolopoulos, G., Jex, I. (eds) Quantum State Transfer and Network Engineering. Quantum Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39937-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39937-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39936-7

  • Online ISBN: 978-3-642-39937-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics