Skip to main content

Networked Quantum Systems

  • Chapter
  • First Online:
Uncertainty in Complex Networked Systems

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

  • 845 Accesses

Abstract

This chapter presents a survey of results in the area of networked quantum systems. The chapter includes background material on quantum linear system models and finite level quantum system models. Different forms of these models are discussed and the issue of physical realizability is addressed. Also, the Kalman decomposition for linear quantum systems is described. The use of optical linear quantum networks in the physical realization of quantum systems is discussed for both the passive and non-passive case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Armen, J.K. Au, J.K. Stockton, A.C. Doherty, and H. Mabuchi. Adaptive homodyne measurement of optical phase. Physical Review Letters, 89(13), 2002. 133602.

    Article  Google Scholar 

  2. V. P. Belavkin. Quantum stochastic calculus and quantum nonlinear filtering. Journal of Multivariate Analysis, 42:171–201, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  3. V.P. Belavkin. On the theory of controlling observable quantum systems. Automation and Remote Control, 42(2):178–188, 1983.

    MATH  Google Scholar 

  4. V.P. Belavkin. Quantum stochastic calculus and quantum nonlinear filtering. J. Multivariate Analysis, 42:171–201, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Bouten, J. Stockton, A. Silberfarb, and H. Mabuchi. Scattering of polarized laser light by an atomic gas in free space: A quantum stochastic differential equation approach. Physical Review A, 75(025211), 2007.

    Google Scholar 

  6. L. Bouten, R. van Handel, and M. R. James. A discrete invitation to quantum filtering and feedback control. SIAM Review, 51(2):239–316, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Bouten, R. van Handel, and M.R. James. An introduction to quantum filtering. SIAM J. Control and Optimization, 46(6):2199–2241, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. L. Braunstein. Squeezing as an irreducible resource. PHYSICAL REVIEW A, 71:055801, 2005.

    Article  Google Scholar 

  9. A.C. Doherty, J.C. Doyle, H. Mabuchi, K. Jacobs, and S. Habib. Robust control in the quantum domain. In Proceedings of the 39th IEEE Conference on Decision and Control, page 949, Sydney, NSW, Australia, December 2000.

    Google Scholar 

  10. A.C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S.M. Tan. Quantum feedback control and classical control theory. Physical Review A, 62, 2000. 012105.

    Article  Google Scholar 

  11. A.C. Doherty and K. Jacobs. Feedback-control of quantum systems using continuous state-estimation. Physical Review A, 60:2700–2711, 1999.

    Article  Google Scholar 

  12. M. F. Emzir, I. R Petersen, and M. Woolley. On physical realizability of nonlinear quantum stochastic differential equations. Automatica, 2018. To appear, accepted 5 April 2018.

    Google Scholar 

  13. L. A. Duffaut Espinosa, Z. Miao, I. R. Petersen, V. Ugrinovskii, and M. R. James. Physical realizability and preservation of commutation and anticommutation relations for n-level quantum systems. SIAM Journal on Control and Optimization, 54(2):632–661, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Gough and M. James. Quantum feedback networks: Hamiltonian formulation. Communications in Mathematical Physics, 287:1109–1132, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Gough and M. R. James. The series product and its application to quantum feedforward and feedback networks. IEEE Transactions on Automatic Control, 54(11):2530–2544, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. E. Gough, M. R. James, and H. I. Nurdin. Squeezing components in linear quantum feedback networks. Physical Review A, 81:023804, 2010.

    Article  Google Scholar 

  17. J. E. Gough and S. Wildfeuer. Enhancement of field squeezing using coherent feedback. Physical Review A, 80:042107, 2009.

    Article  Google Scholar 

  18. J. E. Gough and G. Zhang. On realization theory of quantum linear systems. Automatica, 59:139–151, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.E. Gough, R. Gohm, and M. Yanagisawa. Linear quantum feedback networks. Physical Review A, 78:062104, 2008.

    Article  Google Scholar 

  20. S. Grivopoulos and I. R. Petersen. Linear quantum system transfer function realization using static networks for i/o processing and feedback. SIAM Journal on Control and Optimization, 55(5):3349–3369, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Grivopoulos and I. R. Petersen. Bilinear Hamiltonian interactions between linear quantum systems via feedback. Automatica, 89:103–110, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Grivopoulos, G. Zhang, I. R. Petersen, and J. E. Gough. The Kalman decomposition for linear quantum stochastic systems. In Proceedings of the 2017 American Control Conference, Seattle, WA, May 2017.

    Google Scholar 

  23. R. Hamerly and H. Mabuchi. Advantages of coherent feedback for cooling quantum oscillators. Physical Review Letters, 109:173602, 2012.

    Article  Google Scholar 

  24. H. G. Harno and I. R. Petersen. Synthesis of linear coherent quantum control systems using a differential evolution algorithm. IEEE Transactions on Automatic Control, 60(3):799–805, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  25. G.M. Huang, T.J. Tarn, and J.W. Clark. On the controllability of quantum-mechanical systems. Journal of Mathematical Physics, 24(11):2608–2618, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  26. R.L. Hudson and K.R. Parthasarathy. Quantum Ito’s formula and stochastic evolution. Communications in Mathematical Physics, 93:301–323, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. R. James, H. I. Nurdin, and I. R. Petersen. \({H}^\infty \) control of linear quantum stochastic systems. IEEE Transactions on Automatic Control, 53(8):1787–1803, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  28. M.R. James and J.E. Gough. Quantum dissipative systems and feedback control design by interconnection. IEEE Transactions on Automatic Control, 55(8):1806 –1821, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Kerckhoff, L. Bouten, A. Silberfarb, and H. Mabuchi. Physical model of continuous two-qubit parity measurement in a cavity-QED network. Physical Review A, 79(2):024305, 2009.

    Article  Google Scholar 

  30. J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi. Designing quantum memories with embedded control: Photonic circuits for autonomous quantum error correction. Phys. Rev. Lett., 105:040502, 2010.

    Article  Google Scholar 

  31. A. Khodaparastsichani and I. R. Petersen. A modified frequency domain condition for the physical realizability of linear quantum stochastic systems. IEEE Transactions on Automatic Control, 63(1):277–282, 2018.

    Article  MathSciNet  Google Scholar 

  32. A. Khodaparastsichani, I. R. Petersen, and I. G. Vladimirov. Covariance dynamics and entanglement in translation invariant linear quantum stochastic networks. In Proceedings of the 54th IEEE Conference on Decision and Control, Osaka, Japan, December 2015.

    Google Scholar 

  33. A. Khodaparastsichani, I. Vladimirov, and I. R. Petersen. Decentralised coherent quantum control design for translation invariant linear quantum stochastic networks with direct coupling. In Proceedings of 2015 Australian Control Conference, Gold Coast, Australia, November 2015.

    Google Scholar 

  34. U Leonhardt and A Neumaier. Explicit effective hamiltonians for general linear quantum-optical networks. Journal of Optics B: Quantum and Semiclassical Optics, 6:L1–L4, 2004.

    Article  MathSciNet  Google Scholar 

  35. S. Ma, M. Woolley, and I. R. Petersen. Linear quantum systems with diagonal passive Hamiltonian and a single dissipative channel. Systems & Control Letters, 99:64–71, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Ma, M. Woolley, I. R. Petersen, and N. Yamamoto. Pure Gaussian quantum states from passive Hamiltonians and an active local dissipative process. In 55th IEEE Conference on Decision and Control, Las Vegas, NV, December 2016.

    Google Scholar 

  37. S. Ma, M. Woolley, I. R. Petersen, and N. Yamamoto. Pure Gaussian states from quantum harmonic oscillator chains with a single local dissipative process. Journal of Physics A, 50(13):135301, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Ma, M. Woolley, I. R. Petersen, and N. Yamamoto. Cascade and locally dissipative realizations of linear quantum systems for pure gaussian state covariance assignment. Automatica, 2018. To appear, accepted 4 Nov 2017.

    Google Scholar 

  39. A. I. Maalouf and I. R. Petersen. Bounded real properties for a class of linear complex quantum systems. IEEE Transactions on Automatic Control, 56(4):786 – 801, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. I. Maalouf and I. R. Petersen. Coherent \({H}^{\infty }\) control for a class of linear complex quantum systems. IEEE Transactions on Automatic Control, 56(2):309–319, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  41. H. Mabuchi. Experiments in real-time quantum feedback. In Proceedings of the 41st IEEE Conference on Decision and Control, pages 450–451, Las Vegas, Nevada, USA, December 2002.

    Google Scholar 

  42. H. Mabuchi. Coherent-feedback quantum control with a dynamic compensator. Physical Review A, 78:032323, 2008.

    Article  Google Scholar 

  43. H. Mabuchi and N. Khaneja. Principles and applications of control in quantum systems. International Journal of Robust and Nonlinear Control, 15:647–667, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  44. P. A. Meyer. Quantum Probability for Probabilists. Springer-Verlag, Berlin, second edition, 1995.

    Book  MATH  Google Scholar 

  45. H. I. Nurdin, S. Grivopoulos, and I. R. Petersen. The transfer function of generic linear quantum stochastic systems has a pure cascade realization. Automatica, 69:324–333, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  46. H. I. Nurdin, M. R. James, and A. C. Doherty. Network synthesis of linear dynamical quantum stochastic systems. SIAM Journal on Control and Optimization, 48(4):2686–2718, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  47. H. I. Nurdin, M. R. James, and I. R. Petersen. Coherent quantum LQG control. Automatica, 45(8):1837–1846, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  48. H. I. Nurdin and N. Yamamoto. Linear Dynamical Quantum Systems: Analysis, Synthesis, and Control. Springer, Berlin, 2017.

    Book  MATH  Google Scholar 

  49. H.I. Nurdin. On synthesis of linear quantum stochastic systems by pure cascading. IEEE Transactions on Automatic Control, 55(10):2439 –2444, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  50. H.I. Nurdin. Synthesis of linear quantum stochastic systems via quantum feedback networks. IEEE Transactions on Automatic Control, 55(4):1008 –1013, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  51. H.I. Nurdin, I. R. Petersen, and M. R. James. On the infeasibility of entanglement generation in Gaussian quantum systems via classical control. IEEE Transactions on Automatic Control, 57(1):198–203, 2012. arXiv:1107.3174.

    Article  MathSciNet  MATH  Google Scholar 

  52. K.R. Parthasarathy. An Introduction to Quantum Stochastic Calculus. Birkhauser, Berlin, 1992.

    Book  MATH  Google Scholar 

  53. I. R. Petersen. Cascade cavity realization for a class of complex transfer functions arising in coherent quantum feedback control. Automatica, 47(8):1757–1763, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  54. I. R. Petersen. Singular perturbation approximations for a class of linear quantum systems. IEEE Transactions on Automatic Control, 58(1):193–198, 2013. arXiv:1107.5605.

    Article  MathSciNet  MATH  Google Scholar 

  55. I. R. Petersen. Quantum linear systems theory. Open Automation and Control Systems Journal, 8:67–93, 2016.

    Article  Google Scholar 

  56. I. R. Petersen. Time averaged consensus in a direct coupled coherent quantum observer network. Journal of Control Theory and Technology, 15(3):163–176, 2017.

    Article  MathSciNet  Google Scholar 

  57. I. R. Petersen and R. Tempo. Robust control of uncertain systems: Classical results and recent developments. Automatica, 50:1315–1335, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  58. G. Sarma, A. Silberfarb, and H. Mabuchi. Quantum stochastic calculus approach to modeling double-pass atom-field coupling. Physical Review A, 78:025801, 2008.

    Article  Google Scholar 

  59. A. J. Shaiju and I. R. Petersen. A frequency domain condition for the physical realizability of linear quantum systems. IEEE Transactions on Automatic Control, 57(8):2033 – 2044, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  60. D. Shale. Linear symmetries of free boson fields. Transactions of the American Mathematical Society, 103:149–167, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  61. G. Shi, D. Dong, I. R. Petersen, and K. H. Johansson. Reaching a quantum consensus: Master equations that generate symmetrization and synchronization. IEEE Transactions on Automatic Control, 61(2):374–387, 2016.

    MathSciNet  MATH  Google Scholar 

  62. G. Shi, S. Fu, and I. R. Petersen. Consensus of quantum networks with directed interactions: Fixed and switching structures. IEEE Transactions on Automatic Control, 62(4):2014–2019, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  63. R. van Handel, J. K. Stockton, and H. Mabuchi. Modelling and feedback control design for quantum state preparation. Journal of Optics B: Quantum and Semiclassical Optics, 7(10):S179, 2005.

    Article  MathSciNet  Google Scholar 

  64. I. Vladimirov and I. R. Petersen. Physical realizability and mean square performance of translation invariant networks of interacting linear quantum stochastic systems. In Proceedings of the 21th International Symposium on Mathematical Theory of Networks and Systems, Groningen, The Netherlands, 2014.

    Google Scholar 

  65. S. L. Vuglar and I. R. Petersen. Singular perturbation approximations for general linear quantum systems. In Proceedings of the 2012 Australian Control Conference, Sydney, Australia, November 2012. arXiv:1208.6155.

  66. S. L. Vuglar and I. R. Petersen. Quantum noises, physical realizability and coherent quantum feedback control. IEEE Transactions on Automatic Control, 62(2):998–1003, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  67. S. Wang, H. I. Nurdin, G. Zhang, and M. R. James. Quantum optical realization of classical linear stochastic systems. Automatica, 49(10):3090 – 3096, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  68. W.S. Warren, H. Rabitz, and M. Dahleh. Coherent control of quantum dynamics: The dream is alive. Science, 259:1581–1589, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  69. G. Zhang, S. Grivopoulos, I. R. Petersen, and J. E. Gough. The Kalman decomposition for linear quantum systems. IEEE Transactions on Automatic Control, 63(2):331–346, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  70. H. Zhang and H. Rabitz. Robust optimal control of quantum molecular systems in the presence of disturbances and uncertainties. Physical Review A, 49:2241–2254, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Petersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petersen, I.R. (2018). Networked Quantum Systems. In: Başar, T. (eds) Uncertainty in Complex Networked Systems. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04630-9_17

Download citation

Publish with us

Policies and ethics