Skip to main content

7 Molecular Mechanisms of Histoplasma Pathogenesis

  • Chapter
  • First Online:
Human Fungal Pathogens

Part of the book series: The Mycota ((MYCOTA,volume 12))

Abstract

Histoplasma capsulatum is a thermally dimorphic fungus that causes respiratory and systemic disease in both immunocompromised and immunocompetent individuals. Mammalian body temperatures trigger differentiation of Histoplasma into pathogenic yeasts, which infect and survive within host phagocytes. A signaling histidine kinase and three transcription factors regulate the dimorphic switch and expression of the yeast-phase regulon. Factors uniquely produced by yeasts facilitate Histoplasma survival by concealing molecular signatures to prevent Histoplasma detection by phagocytes and by detoxifying antimicrobial defense molecules produced by phagocytes. The synthesis of α-linked cell wall glucan polysaccharides enables stealthy entry into phagocytes and the expression of an extracellular superoxide dismutase and an extracellular catalase that protect Histoplasma yeasts specifically from host-derived reactive oxygen. Once survival and intracellular residence is accomplished, Histoplasma synthesizes factors for nutrient acquisition in the nutrient-limited phagosome, including iron-scavenging siderophores and a ferric reductase. In addition, Histoplasma yeasts secrete several novel factors with undefined functions that are probably linked to pathogenesis by virtue of their pathogenic-phase-specific expression and their extracellular location, which enables them to act at the host–pathogen interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aderem A (2003) Phagocytosis and the inflammatory response. J Infect Dis 187:S340–S345

    Article  PubMed  CAS  Google Scholar 

  • Ajello L (1971) Distribution of Histoplasma capsulatum in the United States. In: Ajello L, Chick EW, Furcolow MF (eds) Histoplasmosis. Charles C. Thomas, Springfield, pp. 103–22

    Google Scholar 

  • Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-Oliveira RM, Almeida IC, Nosanchuk JD (2008) Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol 10:1695–1710

    Article  PubMed  CAS  Google Scholar 

  • Allen HL, Deepe GS (2006) B cells and CD4 − CD8− T cells are key regulators of the severity of reactivation histoplasmosis. J Immunol 177:1763–1771

    PubMed  CAS  Google Scholar 

  • Allendoerfer R, Deepe GS (1998) Blockade of endogenous TNF-α exacerbates primary and secondary pulmonary histoplasmosis by differential mechanisms. J Immunol 160:6072–6082

    PubMed  CAS  Google Scholar 

  • Baddley JW, Winthrop KL, Patkar NM, Delzell E, Beukelman T, Xie F, Chen L, Curtis JR (2011) Geographic distribution of endemic fungal infections among older persons, United States. Emerg Infect Dis 17:1664–1669

    Article  PubMed  Google Scholar 

  • Batanghari JW, Goldman WE (1997) Calcium dependence and binding in cultures of Histoplasma capsulatum. Infect Immun 65:5257–5261

    PubMed  CAS  Google Scholar 

  • Beck MR, DeKoster GT, Hambly DM, Gross ML, Cistola DP, Goldman WE (2008) Structural features responsible for the biological stability of Histoplasma’s virulence factor CBP. Biochemistry 47:4427–4438

    Article  PubMed  CAS  Google Scholar 

  • Beck MR, DeKoster GT, Cistola DP, Goldman WE (2009) NMR structure of a fungal virulence factor reveals structural homology with mammalian saposin B. Mol Microbiol 72:344–353

    Article  PubMed  CAS  Google Scholar 

  • Bohse ML, Woods JP (2005) Surface localization of the Yps3p protein of Histoplasma capsulatum. Eukaryot Cell 4:685–693

    Article  PubMed  CAS  Google Scholar 

  • Bohse ML, Woods JP (2007a) Expression and interstrain variability of the YPS3 gene of Histoplasma capsulatum. Eukaryot Cell 6:609–615

    Article  PubMed  CAS  Google Scholar 

  • Bohse ML, Woods JP (2007b) RNA interference-mediated silencing of the YPS3 gene of Histoplasma capsulatum reveals virulence defects. Infect Immun 75:2811–2817

    Article  PubMed  CAS  Google Scholar 

  • Bullock WE, Wright SD (1987) Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. J Exp Med 165:195–210

    Article  PubMed  CAS  Google Scholar 

  • Chu JH, Feudtner C, Heydon K, Walsh TJ, Zaoutis TE (2006) Hospitalizations for endemic mycoses: a population-based national study. Clin Infect Dis 42:822–825

    Article  PubMed  Google Scholar 

  • Cooper KG, Woods JP (2009) Secreted dipeptidyl peptidase IV activity in the dimorphic fungal pathogen Histoplasma capsulatum. Infect Immun 77:2447–2454

    Article  PubMed  CAS  Google Scholar 

  • Deepe GS Jr, Gibbons R, Brunner GD, Gomez FJ (1996) A protective domain of heat-shock protein 60 from Histoplasma capsulatum. J Infect Dis 174:828–834

    Article  PubMed  CAS  Google Scholar 

  • Deepe GS, Gibbons R, Woodward E (1999) Neutralization of endogenous granulocyte-macrophage colony-stimulating factor subverts the protective immune response to Histoplasma capsulatum. J Immunol 163:4985–4993

    PubMed  CAS  Google Scholar 

  • Drummond RA, Brown GD (2011) The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol 14:392–399

    Article  PubMed  CAS  Google Scholar 

  • Edwards LB, Acquaviva FA, Livesay VT, Cross FW, Palmer CE (1969) An atlas of sensitivity to tuberculin, PPD-B, and histoplasmin in the United States. Am Rev Respir Dis 99(Suppl):1–132

    PubMed  Google Scholar 

  • Edwards JA, Alore EA, Rappleye CA (2011a) The yeast-phase virulence requirement for α-glucan synthase differs among Histoplasma capsulatum chemotypes. Eukaryot Cell 10:87–97

    Article  PubMed  CAS  Google Scholar 

  • Edwards JA, Zemska O, Rappleye CA (2011b) Discovery of a role for Hsp82 in Histoplasma virulence through a quantitative screen for macrophage lethality. Infect Immun 79:3348–3357

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg LG, Goldman WE (1987) Histoplasma capsulatum fails to trigger release of superoxide from macrophages. Infect Immun 55:29–34

    PubMed  CAS  Google Scholar 

  • Fleischmann J, Wu-Hsieh B, Howard DH (1990) The intracellular fate of Histoplasma capsulatum in human macrophages is unaffected by recombinant human interferon-gamma. J Infect Dis 161:143–145

    Article  PubMed  CAS  Google Scholar 

  • Garfoot AG, Zemska O, Rappleye CA (2013) Histoplasma capsulatum depends on de novo vitamin biosynthesis for intraphagosomal proliferation. Manuscript submitted

    Google Scholar 

  • Gildea LA, Morris RE, Newman SL (2001) Histoplasma capsulatum yeasts are phagocytosed via very late antigen-5, killed, and processed for antigen presentation by human dendritic cells. J Immunol 166:1049–1056

    PubMed  CAS  Google Scholar 

  • Gomez FJ, Allendoerfer R, Deepe GS (1995) Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis. Infect Immun 63:2587–2595

    PubMed  CAS  Google Scholar 

  • Gomez FJ, Pilcher-Roberts R, Alborzi A, Newman SL (2008) Histoplasma capsulatum cyclophilin a mediates attachment to dendritic cell VLA-5. J Immunol 181:7106–7114

    PubMed  CAS  Google Scholar 

  • Goodridge HS, Wolf AJ, Underhill DM (2009) Beta-glucan recognition by the innate immune system. Immunol Rev 230:38–50

    Article  PubMed  CAS  Google Scholar 

  • Guimarães AJ, Frases S, Gomez FJ, Zancopé-Oliveira RM, Nosanchuk JD (2009) Monoclonal antibodies to heat shock protein 60 alter the pathogenesis of Histoplasma capsulatum. Infect Immun 77:1357–1367

    Article  PubMed  Google Scholar 

  • Hamilton AJ, Bartholomew MA, Figueroa J, Fenelon LE, Hay RJ (1990) Evidence that the M antigen of Histoplasma capsulatum var. capsulatum is a catalase which exhibits cross-reactivity with other dimorphic fungi. J Med Vet Mycol 28:479–485

    Article  PubMed  CAS  Google Scholar 

  • Hilty J, Smulian AG, Newman SL (2008) The Histoplasma capsulatum vacuolar ATPase is required for iron homeostasis, intracellular replication in macrophages and virulence in a murine model of histoplasmosis. Mol Microbiol 70:127–139

    Article  PubMed  CAS  Google Scholar 

  • Hilty J, George Smulian A, Newman SL (2011) Histoplasma capsulatum utilizes siderophores for intracellular iron acquisition in macrophages. Med Mycol 49:633–642

    PubMed  CAS  Google Scholar 

  • Holbrook ED, Edwards JA, Youseff BH, Rappleye CA (2011) Definition of the extracellular proteome of pathogenic-phase Histoplasma capsulatum. J Proteome Res 10:1929–1943

    Article  PubMed  CAS  Google Scholar 

  • Holbrook ED, Smolnycki KA, Youseff BH, Rappleye CA (2013) Redundant catalases detoxify phagocyte reactive oxygen and facilitate Histoplasma capsulatum pathogenesis. Infect Immun 81(7):2334–2346

    Article  PubMed  CAS  Google Scholar 

  • Howard DH, Rafie R, Tiwari A, Faull KF (2000) Hydroxamate siderophores of Histoplasma capsulatum. Infect Immun 68:2338–2343

    Article  PubMed  CAS  Google Scholar 

  • Hwang L, Hocking-Murray D, Bahrami AK, Andersson M, Rine J, Sil A (2003) Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum using a genomic shotgun microarray. Mol Biol Cell 14:2314–2326

    Article  PubMed  CAS  Google Scholar 

  • Hwang LH, Mayfield JA, Rine J, Sil A (2008) Histoplasma requires SID1, a member of an iron-regulated siderophore gene cluster, for host colonization. PLoS Pathog 4:e1000044

    Article  PubMed  Google Scholar 

  • Hwang LH, Seth E, Gilmore SA, Sil A (2012) SRE1 regulates iron-dependent and-independent pathways in the fungal pathogen Histoplasma capsulatum. Eukaryot Cell 11:16–25

    Article  PubMed  CAS  Google Scholar 

  • Inglis DO, Berkes CA, Murray DRH, Sil A (2010) Conidia but not yeast cells of the fungal pathogen Histoplasma capsulatum trigger a type I interferon innate immune response in murine macrophages. Infect Immun 78:3871–3882

    Article  PubMed  CAS  Google Scholar 

  • Jain VV, Evans T, Peterson MW (2006) Reactivation histoplasmosis after treatment with anti-tumor necrosis factor α in a patient from a nonendemic area. Respir Med 100:1291–1293

    Article  PubMed  Google Scholar 

  • Keath EJ, Abidi FE (1994) Molecular cloning and sequence analysis of yps-3, a yeast-phase-specific gene in the dimorphic fungal pathogen Histoplasma capsulatum. Microbiology 140:759–767

    Article  PubMed  CAS  Google Scholar 

  • Keath EJ, Painter AA, Kobayashi GS, Medoff G (1989) Variable expression of a yeast-phase-specific gene in Histoplasma capsulatum strains differing in thermotolerance and virulence. Infect Immun 57:1384–1390

    PubMed  CAS  Google Scholar 

  • Kügler S, Young B, Miller VL, Goldman WE (2000) Monitoring phase-specific gene expression in Histoplasma capsulatum with telomeric GFP fusion plasmids. Cell Microbiol 2:537–547

    Article  PubMed  Google Scholar 

  • Kurita N, Brummer E, Yoshida S, Nishimura K, Miyaji M (1991a) Antifungal activity of murine polymorphonuclear neutrophils against Histoplasma capsulatum. J Med Vet Mycol 29:133–143

    Article  PubMed  CAS  Google Scholar 

  • Kurita N, Terao K, Brummer E, Ito E, Nishimura K, Miyaji M (1991b) Resistance of Histoplasma capsulatum to killing by human neutrophils. Evasion of oxidative burst and lysosomal-fusion products. Mycopathologia 115:207–213

    Article  PubMed  CAS  Google Scholar 

  • Lane TE, Wu-Hsieh BA, Howard DH (1991) Iron limitation and the gamma interferon-mediated antihistoplasma state of murine macrophages. Infect Immun 59:2274–2278

    PubMed  CAS  Google Scholar 

  • Lane TE, Wu-Hsieh BA, Howard DH (1994) Antihistoplasma effect of activated mouse splenic macrophages involves production of reactive nitrogen intermediates. Infect Immun 62:1940–1945

    PubMed  CAS  Google Scholar 

  • Lin J-S, Huang J-H, Hung L-Y, Wu S-Y, Wu-Hsieh BA (2010) Distinct roles of complement receptor 3, Dectin-1, and sialic acids in murine macrophage interaction with Histoplasma yeast. J Leukoc Biol 88:95–106

    Article  PubMed  CAS  Google Scholar 

  • Long KH, Gomez FJ, Morris RE, Newman SL (2003) Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. J Immunol 170:487–494

    PubMed  CAS  Google Scholar 

  • Marion CL, Rappleye CA, Engle JT, Goldman WE (2006) An α-(1,4)-amylase is essential for α-(1,3)-glucan production and virulence in Histoplasma capsulatum. Mol Microbiol 62:970–983

    Article  PubMed  CAS  Google Scholar 

  • McCormack FX, Gibbons R, Ward SR, Kuzmenko A, Wu H, Deepe GS (2003) Macrophage-independent fungicidal action of the pulmonary collectins. J Biol Chem 278:36250–36256

    Article  PubMed  CAS  Google Scholar 

  • McVeigh I, Morton K (1965) Nutritional studies of Histoplasma capsulatum. Mycopathol Mycol Appl 25:294–308

    Article  PubMed  CAS  Google Scholar 

  • Medoff G, Sacco M, Maresca B, Schlessinger D, Painter A, Kobayashi GS, Carratu L (1986) Irreversible block of the mycelial-to-yeast phase transition of Histoplasma capsulatum. Science (New York) 231:476–479

    Article  CAS  Google Scholar 

  • Nakamura LT, Wu-Hsieh BA, Howard DH (1994) Recombinant murine gamma interferon stimulates macrophages of the RAW cell line to inhibit intracellular growth of Histoplasma capsulatum. Infect Immun 62:680–684

    PubMed  CAS  Google Scholar 

  • Nemecek JC, Wüthrich M, Klein BS (2006) Global control of dimorphism and virulence in fungi. Science 312:583–588

    Article  PubMed  CAS  Google Scholar 

  • Newman SL, Bucher C, Rhodes J, Bullock WE (1990) Phagocytosis of Histoplasma capsulatum yeasts and microconidia by human cultured macrophages and alveolar macrophages. Cellular cytoskeleton requirement for attachment and ingestion. J Clin Invest 85:223–230

    Article  PubMed  CAS  Google Scholar 

  • Newman SL, Gootee L, Brunner G, Deepe GS (1994) Chloroquine induces human macrophage killing of Histoplasma capsulatum by limiting the availability of intracellular iron and is therapeutic in a murine model of histoplasmosis. J Clin Invest 93:1422–1429

    Article  PubMed  CAS  Google Scholar 

  • Newman SL, Gootee L, Stroobant V, van der Goot H, Boelaert JR (1995) Inhibition of growth of Histoplasma capsulatum yeast cells in human macrophages by the iron chelator VUF 8514 and comparison of VUF 8514 with deferoxamine. Antimicrob Agents Chemother 39:1824–1829

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VQ, Sil A (2008) Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci USA 105:4880–4885

    Article  PubMed  CAS  Google Scholar 

  • Nittler MP, Hocking-Murray D, Foo CK, Sil A (2005) Identification of Histoplasma capsulatum transcripts induced in response to reactive nitrogen species. Mol Biol Cell 16:4792–4813

    Article  PubMed  CAS  Google Scholar 

  • Rappleye CA, Engle JT, Goldman WE (2004) RNA interference in Histoplasma capsulatum demonstrates a role for α-(1,3)-glucan in virulence. Mol Microbiol 53:153–165

    Article  PubMed  CAS  Google Scholar 

  • Rappleye CA, Eissenberg LG, Goldman WE (2007) Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor. Proc Natl Acad Sci USA 104:1366–1370

    Article  PubMed  CAS  Google Scholar 

  • Schaffner A, Davis CE, Schaffner T, Markert M, Douglas H, Braude AI (1986) In vitro susceptibility of fungi to killing by neutrophil granulocytes discriminates between primary pathogenicity and opportunism. J Clin Invest 78:511–524

    Article  PubMed  CAS  Google Scholar 

  • Schnur RA, Newman SL (1990) The respiratory burst response to Histoplasma capsulatum by human neutrophils. Evidence for intracellular trapping of superoxide anion. J Immunol 144:4765–4772

    PubMed  CAS  Google Scholar 

  • Sebghati TS, Engle JT, Goldman WE (2000) Intracellular parasitism by Histoplasma capsulatum: fungal virulence and calcium dependence. Science (New York) 290:1368–1372

    Article  CAS  Google Scholar 

  • Sengeløv H, Kjeldsen L, Diamond MS, Springer TA, Borregaard N (1993) Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. J Clin Invest 92:1467–1476

    Article  PubMed  Google Scholar 

  • Sorgi CA, Secatto A, Fontanari C, Turato WM, Belangér C, de Medeiros AI, Kashima S, Marleau S, Covas DT, Bozza PT, Faccioli LH (2009) Histoplasma capsulatum cell wall β-Glucan induces lipid body formation through CD18, TLR2, and dectin-1 receptors: correlation with leukotriene B4 generation and role in HIV-1 infection. J Immunol 182:4025–4035

    Article  PubMed  CAS  Google Scholar 

  • Sullivan TD, Rooney PJ, Klein BS (2002) Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot Cell 1:895–905

    Article  PubMed  CAS  Google Scholar 

  • Timmerman MM, Woods JP (1999) Ferric reduction is a potential iron acquisition mechanism for Histoplasma capsulatum. Infect Immun 67:6403–6408

    PubMed  CAS  Google Scholar 

  • Timmerman MM, Woods JP (2001) Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum. Infect Immun 69:7671–7678

    Article  PubMed  CAS  Google Scholar 

  • Videm V, Strand E (2004) Changes in neutrophil surface-receptor expression after stimulation with FMLP, endotoxin, interleukin-8 and activated complement compared to degranulation. Scand J Immunol 59:25–33

    Article  PubMed  CAS  Google Scholar 

  • Weaver CH, Sheehan KC, Keath EJ (1996) Localization of a yeast-phase-specific gene product to the cell wall in Histoplasma capsulatum. Infect Immun 64:3048–3054

    PubMed  CAS  Google Scholar 

  • Webster RH, Sil A (2008) Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen Histoplasma capsulatum. Proc Natl Acad Sci USA 105:14573–14578

    Article  PubMed  CAS  Google Scholar 

  • Winters MS, Spellman DS, Chan Q, Gomez FJ, Hernandez M, Catron B, Smulian AG, Neubert TA, Deepe GS (2008) Histoplasma capsulatum proteome response to decreased iron availability. Proteome Sci 6:36

    Article  PubMed  Google Scholar 

  • Wolf JE, Massof SE (1990) In vivo activation of macrophage oxidative burst activity by cytokines and amphotericin B. Infect Immun 58:1296–1300

    PubMed  CAS  Google Scholar 

  • Wolf JE, Kerchberger V, Kobayashi GS, Little JR (1987) Modulation of the macrophage oxidative burst by Histoplasma capsulatum. J Immunol 138:582–586

    PubMed  CAS  Google Scholar 

  • Wolf JE, Abegg AL, Travis SJ, Kobayashi GS, Little JR (1989) Effects of Histoplasma capsulatum on murine macrophage functions: inhibition of macrophage priming, oxidative burst, and antifungal activities. Infect Immun 57:513–519

    PubMed  CAS  Google Scholar 

  • Youseff BH, Rappleye CA (2012) RNAi-based gene silencing using a GFP sentinel system in Histoplasma capsulatum. In: Brand AC, MacCallum DM (eds) Host-fungus interactions. Methods and protocols, methods in molecular biology, vol 845. Humana Press, New York, pp 151–164. http://link.springer.com/protocol/10.1007/978-1-61779-539-8_10

  • Youseff BH, Dougherty JA, Rappleye CA (2009) Reverse genetics through random mutagenesis in Histoplasma capsulatum. BMC Microbiol 9:236

    Article  PubMed  Google Scholar 

  • Youseff BH, Holbrook ED, Smolnycki KA, Rappleye CA (2012) Extracellular superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative stress. PLoS Pathog 8:e1002713

    Article  PubMed  CAS  Google Scholar 

  • Zancopé-Oliveira RM, Reiss E, Lott TJ, Mayer LW, Deepe GS (1999) Molecular cloning, characterization, and expression of the M Antigen of Histoplasma capsulatum. Infect Immun 67:1947–1953

    PubMed  Google Scholar 

  • Zarnowski R, Cooper KG, Brunold LS, Calaycay J, Woods JP (2008a) Histoplasma capsulatum secreted γ-glutamyltransferase reduces iron by generating an efficient ferric reductant. Mol Microbiol 70:352–368

    Article  PubMed  CAS  Google Scholar 

  • Zarnowski R, Dobrzyn A, Ntambi JM, Woods JP (2008b) Ferrous, but not ferric, iron maintains homeostasis in Histoplasma capsulatum triacylglycerides. Curr Microbiol 57:153–157

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Rappleye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rappleye, C.A. (2014). 7 Molecular Mechanisms of Histoplasma Pathogenesis. In: Kurzai, O. (eds) Human Fungal Pathogens. The Mycota, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39432-4_7

Download citation

Publish with us

Policies and ethics