Skip to main content

Instationary Partial Differential Equations

  • Chapter
  • First Online:
The Concept of Stability in Numerical Mathematics

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 45))

  • 2116 Accesses

Abstract

The analysis presented in this chapter evolved soon after 1950, when discretisations of hyperbolic and parabolic differential equations had to be developed. Most of the material can be found in Richtmyer–Morton [21], see also Lax–Richtmyer [16]. All results concern linear differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Courant, R., Friedrichs, K.O., Lewy, H.: Über die partiellen Differentialgleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  2. Crank, J., Nicolson, P.: A practical method for numerical evaluation of partial differential equations of the heat-conduction type. Proc. Cambridge Phil. Soc. 43, 50–67 (1947). (reprint in Adv. Comput. Math. 6, 207–226, 1996)

    Google Scholar 

  3. de Moura, C.A., Kubrusly, C.S. (eds.): The Courant–Friedrichs–Lewy (CFL) condition. Springer, New York (2013)

    MATH  Google Scholar 

  4. Du Fort, E.C., Frankel, S.P.: Stability conditions in the numerical treatment of parabolic differential equations. Math. Tables and Other Aids to Computation 7, 135–152 (1953)

    Google Scholar 

  5. Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7, 345–392 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hackbusch, W.: Iterative Lösung großer schwachbesetzter Gleichungssysteme, 2nd ed. Teubner, Stuttgart (1993)

    Book  MATH  Google Scholar 

  7. Hackbusch, W.: Iterative solution of large sparse systems of equations. Springer, New York (1994)

    Book  MATH  Google Scholar 

  8. Hackbusch, W.: Elliptic differential equations. Theory and numerical treatment, Springer Series in Computational Mathematics, vol. 18, 2nd ed. Springer, Berlin (2003)

    Google Scholar 

  9. Kreiss, H.O.: Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren. BIT 2, 153–181 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kreiss, H.O.: On difference approximations of the dissipative type for hyperbolic differential equations. Comm. Pure Appl. Math. 17, 335–353 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kreiss, H.O.: Difference approximations for the initial-boundary value problem for hyperbolic differential equations. In: D. Greenspan (ed.) Numerical solution of nonlinear differential equations, pp. 141–166. Wiley, New York (1966)

    Google Scholar 

  12. Kreiss, H.O.: Initial boundary value problem for hyperbolic systems. Comm. Pure Appl. Math. 23, 277–298 (1970)

    Article  MathSciNet  Google Scholar 

  13. Kreiss, H.O., Wu, L.: On the stability definition of difference approximations for the initial boundary value problem. Appl. Numer. Math. 12, 213–227 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kröner, D.: Numerical Schemes for Conservation Laws. J. Wiley und Teubner, Stuttgart (1997)

    MATH  Google Scholar 

  15. Lax, P.D.: Difference approximations of linear differential equations – an operator theoretical approach. In: N. Aronszajn, C.B. Morrey Jr (eds.) Lecture series of the symposium on partial differential equations, pp. 33–66. Dept. Math., Univ. of Kansas (1957)

    Google Scholar 

  16. Lax, P.D., Richtmyer, R.D.: Survey of the stability of linear finite difference equations. Comm. Pure Appl. Math. 9, 267–293 (1965)

    Article  MathSciNet  Google Scholar 

  17. Lax, P.D., Wendroff, B.: Systems of conservation laws. Comm. Pure Appl. Math. 13, 217–237 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lax, P.D., Wendroff, B.: Difference schemes for hyperbolic equations with high order of accuracy. Comm. Pure Appl. Math. 17, 381–398 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  19. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  20. Mizohata, S.: The theory of partial differential equations. University Press, Cambridge (1973)

    MATH  Google Scholar 

  21. Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-value Problems, 2nd ed. John Wiley & Sons, New York (1967). Reprint by Krieger Publ. Comp., Malabar, Florida, 1994

    Google Scholar 

  22. Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover Publ. Inc, New York (1990)

    Google Scholar 

  23. Riesz, M.: Sur les maxima des formes bilinéaires et sur les fonctionelles linéaires. Acta Math. 49, 465–497 (1926)

    Article  MathSciNet  Google Scholar 

  24. Thomée, V.: Stability of difference schemes in the maximum-norm. J. Differential Equations 1, 273–292 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  25. Thorin, O.: An extension of the convexity theorem of M. Riesz. Kungl. Fysiogr. Sällsk. i Lund Förh. 8(14) (1939)

    Google Scholar 

  26. Tomoeda, K.: Stability of Friedrichs’s scheme in the maximum norm for hyperbolic systems in one space dimension. Appl. Math. Comput. 7, 313–320 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zeidler, E. (ed.): Oxford Users’ Guide to Mathematics. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hackbusch, W. (2014). Instationary Partial Differential Equations. In: The Concept of Stability in Numerical Mathematics. Springer Series in Computational Mathematics, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39386-0_6

Download citation

Publish with us

Policies and ethics