Skip to main content
Log in

Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes,Acta math. t. 30 (1906), p. 175–193.

    Article  Google Scholar 

  2. Il en ressort queMαβ et toutes ses puissances à des exposants positifs sont aussi convexes.

  3. F. Hausdorff, Eine Ausdehnung des Parsevalschen Satzes über Fourierreihen,Math. Zeitschr. t. 16 (1923), p. 163–169. On y trouve une liste des travaux relatifs deM. Young.

    Article  MathSciNet  Google Scholar 

  4. F. Riesz, Über eine Verallgemeinerung der Parsevalschen Formel,Math. Zeitschr. t. 18 (1923), p. 117–124.

    Article  MathSciNet  Google Scholar 

  5. O. Hölder, Ueber einen Mittelwerthssatz,Götting. Nachr. 1889, p. 38–47.Cf. aussiJensen,l. c. Sur les fonctions convexes et les inégalités entre les valeurs moyennes,Acta math. t. 30 (1906), p. 182.

  6. Jusqu'ici il aurait suffi de supposer que nos points se trouvent dans le carré 0≦α≦1, 0≦β≦1.

  7. Cf. pour un calcul analogueF. Hausdorff etF. Riesz,l. c. Sur les fonctions convexes et les inégalités entre les valeurs moyennes,Acta math. t. 30 (1906).

  8. Le raisonnement qui précède tient aussi sans passage à la limite pour les points α+β=1, α>0, β>0.

  9. l. c. Le raisonnement qui précède tient aussi sans passage à la limite pour les points α+β=1, α>0, β>0. p. 124. Nous reviendrons plus loin sur la généralisation du théorème de Parseval donnée dans le travail cité et dont le théorème du texte est un cas particulier.M. F. Riesz a observé que ce théorème particulier fournit de son côté, par un passage à la limite, la généralisation en question du théorème de Parseval.

  10. Pour ces faits et pour les indications bibliographiquesvoir entre autres:J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen,Sitzungsber. Akad. Wien, t. 122, Abt. II a, (1913), p. 1295–1438;T. H. Hildebrandt, On integrals related to and extensions of the Lebesgue integrals,Am. M. S. Bull. t. 24 (1918), p. 113–144, 177–202.C. de la Vallée Poussin, Les fonctions à variation bornée et les questions qui s'y rattachent,Bull. des Sciences Math. (2) t. 44 (1920), p. 267–296. Dans toutes les applications qui suivent, même dans celles concernant des séries, on pourrait s'arranger avec l'intégrale de Lebesgue, mais nous préférons exposer nos résultats dans le langage de l'intégrale plus générale de Stieltjes-Lebesgue, qui permet d'une manière naturelle de considérer séries et intégrales sous le même point de vue.

    Google Scholar 

  11. A toutes les valeurs dey appartenant à un segment vertical, il correspond une seule valeur dex, l'abscisse de tous les points du segment; à une valeur dey appartenant à un segment horizontal, on fait correspondre une quelconque des abscisses des points du segment.

  12. La fonctionh(y) sera, en général, indéterminée pour les valeurs dey qui correspondent à des segments horizontaux; cependant ces valeurs formant un ensemble dénombrable, n'exerceront aucune influence sur l'intégrale, si l'on la prend au sens de Lebesgue.

  13. Dans la suite, pour simplifier l'écriture, nous supprimerons, en général, la variable et les limites d'intégration.

  14. Ce n'est que pour des raisons de rédaction que nous traitons les opérations bilinéaires avant d'avoir parlé des opérations linéaires.

  15. Evidemment, cela ne pourra arriver que dans les intervalles extrêmes.

  16. Dans la définition deM0β, on aura à remplacer dans le second membre de (20) le facteur correspondant àf par la borne supérieure de |f| au sens de Lebesgue, c'est-à-dire par le plus petit nombre que |f| ne dépasse que dans un ensemble nul au plus. La définition deMα0 se fait d'une manière analogue.

  17. Cf. p. ex.Radon,l. c. J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen,Sitzungsber. Akad. Wien, t. 122, (1913), p. 1371.

  18. Pour la signification deM *0γ et deM * γ0 . la note 2 p. 477.

  19. Ce n'est que pour simplifier les énoncés que nous considérons ici les fonctionse 2kπix au lieu des fonctionse kix.

  20. l. c. note 2F. Hausdorff, Eine Ausdehnung des Parsevalschen Satzes über Fourierreihen,Math. Zeitschr. t. 16 (1923), p. 466. On y trouve une liste des travaux relatifs deM. Young.

  21. l. c. note 3,F. Riesz, Über eine Verallgemeinerung der Parsevalschen Formel,Math. Zeitschr. t. 18 (1923), p. 466.

  22. Dans le cas du théorème de Young-Hausdorff, on définira ψ(x) d'une manière analogue dans l'intervalle (−∞, +∞). Ajoutons qu'on pourrait éviter les intégrales de Stieltjes-Lebesgue et se contenter d'intégrales ordinaires par le procédé un peu artificiel de poser, dans le cas du texte p. ex., ψ(x)=x, pour 0≦x≦∞ etT(f)=C k pourkx<k+1.

  23. ω k (t) désigne la valeur conjuguée deω k (t).

  24. Cf. la note 2 p. 477 et la note 1 p. 480.

  25. E. C. Titchmarsh, A contribution to the theory of Fourier transofrms,Proc. London Math. Soc. (2), t. 23 (1924), p. 279–287.

    Google Scholar 

  26. Au lieu de l'inégalité de Bessel on s'appuie sur un théorème connu deM. Plancherel.

  27. M. Riesz, 1) Les fonctions conjuguées et les séries de Fourier,Comptes rendus, t. 178 (28 avril 1924) p. 1464; 2) Sur les fonctions conjuguées, va paraître dans laMath. Zeitschr.

    Google Scholar 

  28. Cf. aussiE. C. Titchmarsh, Reciprocal formulæ involving series and integrals,Math. Zeitschr. t. 25 (1926) p. 321–347.

    Article  MathSciNet  Google Scholar 

  29. A. Plessner, Zur Theorie der konjugierten trigonometrischen Reihen,Inauguraldissertation, Giessen, 1923.

  30. l. c. A. Plessner, Zur Theorie der konjugierten trigonometrischen Reihen,Inauguraldissertation, Giessen, 1923. p. 324.

  31. Les résultats concernant les suites des types (1, 1) ou (∞, ∞) que nous avons indiqués sont dus àMM. W. H. Young etS. Szidon;W. H. Young, On Fourier series and functions of bounded variation,Lond. Roy. Soc. Proc. t. 88 (1913), p. 561–568, On a condition that a trigonometrical series should have a certain form,ibid. p. 569–574;S. Szidon, Reihentheoretische Sätze und ihre Anwendungen in der Theorie der Fourierschen Reihen,Math. Zeitschr. t. 10 (1921), p. 121–127.M. Fekete a montré (Über Faktorenfolgen welche die “Klasse” einer Fourierschen Reihe unverändert lassen,Szeged Acta Univ. Franc.-Jos. t. 1 (1923), p. 148–166) que lesdites suites sont aussi les suites de facteurs qui transforment bien d'autres classes de fonctions (fonctions continues, fonctions intégrables au sens de Riemann etc.) en elles-mêmes.

    Article  Google Scholar 

  32. Comptes rendus, l. c., Math. Zeitschr. l. c.

  33. Pour de telles suitescf. G. H. Hardy andJ. E. Littlewood, Some properties of fractional integrals,Proc. London Math. Soc. t. 23 (1924)Records. p. XXXVII-XLI.

    Google Scholar 

  34. I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen,Journ. f. Math. t. 140 (1911), p. 1–28,voir, en particulier, p. 6.

    Google Scholar 

  35. On pourrait encore y ajouter le fait presqu'évident que, pour desa jk quelconques, il y a convexité dans tout le plan sur les droites α=const. et β=const.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riesz, M. Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires. Acta Math. 49, 465–497 (1927). https://doi.org/10.1007/BF02564121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02564121

Navigation