Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7924))

  • 1047 Accesses

Abstract

Local search (LS) is a widely used, general approach for solving hard combinatorial search problems, such as the graph coloring problem (GCP). One main advantage of this method is that effective heuristics for a problem may lead to improvements in solving other problems. Recently, it has been shown that an initial LS algorithm for the Boolean satisfiability problem (SAT) called WalkSAT is extremely effective for random SAT instances. Thus, it is interesting to apply the heuristics in WalkSAT to GCP. This paper proposes a random walk based heuristic, which is inspired by WalkSAT but differs in the tie-breaking mechanism. This new heuristic leads to a new LS algorithm for GCP namely FWLS. The experiments on the DIMACS benchmark show that FWLS finds optimal (or best known) solutions for most instances. Also, when compared to other GCP algorithms, including a greedy one, an LS one and a hybrid one, FWLS exhibits very competitive or better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W.H.Freeman and Company (1979)

    Google Scholar 

  2. Chaitin, G.J.: Register allocation and spilling via graph coloring (with retrospective). Best of PLDI, 66–74 (1982)

    Google Scholar 

  3. de Werra, D., Eisenbeis, C., Lelait, S., Marmol, B.: On a Graph-theoretical Model for Cyclic Register Allocation. Discrete Applied Mathematics, 191–203 (1999)

    Google Scholar 

  4. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for educational timetabling problems. European Journal of Operational Research, 177–192 (2007)

    Google Scholar 

  5. Zufferey, N., Amstutz, P., Giaccari, P.: Graph colouring approaches for a satellite range scheduling problem. J. Scheduling, 263–277 (2008)

    Google Scholar 

  6. Class, C.: Bag rationalisation for a food manufacture. Journal of the Operational Research Society 5, 544–551 (2002)

    Google Scholar 

  7. Hertz, A., de Werra, D.: Using Tabu Search Techniques for Graph Coloring. Computing, 345–351 (1987)

    Google Scholar 

  8. Blchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers & OR, 960–975 (2008)

    Google Scholar 

  9. Brélaz, D., Polytechnique, É., de Lausanne, F.: New Methods to Color the Vertices of a Graph. Communications of ACM 22, 251–256 (1979)

    Article  MATH  Google Scholar 

  10. Kroc, L., Sabharwal, A., Selman, B.: An Empirical Study of Optimal Noise and Runtime Distributions in Local Search. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 346–351. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Trick, M.A., Yildiz, H.: A Large Neighborhood Search Heuristic for Graph Coloring. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 346–360. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-coloring problem. Discrete Applied Mathematics, 267–279 (2008)

    Google Scholar 

  13. Hoos, H.H.: An Adaptive Noise Mechanism for WalkSAT. In: AAAI/IAAI, pp. 655–660 (2002)

    Google Scholar 

  14. Balint, A., Fröhlich, A.: Improving Stochastic Local Search for SAT with a New Probability Distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 10–15. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for Invariants in Local Search. In: AAAI/IAAI, pp. 321–326 (1997)

    Google Scholar 

  16. Li, C.M., Wei, W., Zhang, H.: Combining Adaptive Noise and Look-Ahead in Local Search for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–133. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Bui, T.N., Nguyen, T.H., Patel, C.M., Phan, K.-A.T.: An ant-based algorithm for coloring graphs. Discrete Applied Mathematics, 190–200 (2008)

    Google Scholar 

  18. Lü, Z., Hao, J.-K.: A memetic algorithm for graph coloring. European Journal of Operational Research, 241–250 (2010)

    Google Scholar 

  19. Malaguti, E., Monaci, M., Toth, P.: A Metaheuristic Approach for the Vertex Coloring Problem. INFORMS Journal on Computing, 302–316 (2008)

    Google Scholar 

  20. Porumbel, D.C., Hao, J.-K., Kuntz, P.: An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring. Computers & OR, 1822–1832 (2010)

    Google Scholar 

  21. Hamiez, J.-P., Hao, J.-K.: Scatter Search for Graph Coloring. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 168–179. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Fridcn, C., Hertz, A., de Werra, D.: Lausanne: STABULUS: A Technique for Finding Stable Sets in Large Graphs with Tabu Search Computing. 42, 35–44 (1989)

    Google Scholar 

  23. Yesil, C., Yilmaz, B., Korkmaz, E.E.: Hybrid local search algorithms on Graph Coloring Problem. In: HIS, pp. 468–473 (2011)

    Google Scholar 

  24. Galinier, P., Hao, J.-K.: Hybrid Evolutionary Algorithms for Graph Coloring. J. Comb. Optim., 379–397 (1999)

    Google Scholar 

  25. Gent, I.P., Walsh, T.: Towards an Understanding of Hill-Climbing Procedures for SAT. In: AAAI, pp. 28–33 (1993)

    Google Scholar 

  26. Garey, M.R., Johnson, D.S.: In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability (2009)

    Google Scholar 

  27. Bounkong, S., van Mourik, J., Saad, D.: Coloring random graphs and maximizing local diversity. Physical Review E (2006)

    Google Scholar 

  28. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Computers & Operations Research 33, 2547–2562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Leighton, F.T.: A Graph Coloring Algorithm for Large Scheduling Problems. Journal of Research of the National Bureau of Standards 84, 489–506 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Porumbel, D.C., Hao, J.-K., Kuntz, P.: A search space “cartography” for guiding graph coloring heuristics. Computers & OR, 769–778 (2010)

    Google Scholar 

  31. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Applied Mathematics, 2551–2560 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, W., Luo, C., Su, K. (2013). FWLS: A Local Search for Graph Coloring. In: Fellows, M., Tan, X., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 7924. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38756-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38756-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38755-5

  • Online ISBN: 978-3-642-38756-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics