Skip to main content

Improving Stochastic Local Search for SAT with a New Probability Distribution

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2010 (SAT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6175))

Abstract

This paper introduces a new SLS-solver for the satisfiability problem. It is based on the solver gNovelty+. In contrast to gNovelty+, when our solver reaches a local minimum, it computes a probability distribution on the variables from an unsatisfied clause. It then flips a variable picked according to this distribution. Compared with other state-of-the-art SLS-solvers this distribution needs neither noise nor a random walk to escape efficiently from cycles. We compared this algorithm which we called Sparrow to the winners of the SAT 2009 competition on a broad range of 3-SAT instances. Our results show that Sparrow is significantly outperforming all of its competitors on the random 3-SAT problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balint, A., Henn, M., Gableske, O.: A novel approach to combine a SLS- and a DPLL-Solver for the satisfiability problem. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 284–297. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. bwGRiD, member of the German D-Grid initiative, funded by the Ministry for Education and Research and the Ministry for Science, Research and Arts Baden-Württemberg, http://www.bw-grid.de

  3. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of AAAI 2002, pp. 635–660 (2002)

    Google Scholar 

  4. Li, C.M., Huang, W.Q.: Diversification and determinism in local search for satisfiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. McAllester, D., Selman, B., Kautz, H.: Evidence for invariant in local search. In: Proceedings of AAAI 1997, pp. 321–326 (1997)

    Google Scholar 

  6. Pham, D.N., Thornton, J.R., Gretton, C., Sattar, A.: Advances in local search for satisfiability. In: Australian Conference on Artificial Intelligence 2007, pp. 213–222 (2007)

    Google Scholar 

  7. The SAT Competition Homepage: http://www.satcompetition.org

  8. Thornton, J., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative clause weighting for SAT. In: Proceedings of 19th AAAI 2004, pp. 191–196 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balint, A., Fröhlich, A. (2010). Improving Stochastic Local Search for SAT with a New Probability Distribution. In: Strichman, O., Szeider, S. (eds) Theory and Applications of Satisfiability Testing – SAT 2010. SAT 2010. Lecture Notes in Computer Science, vol 6175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14186-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14186-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14185-0

  • Online ISBN: 978-3-642-14186-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics