Skip to main content

NMR as a Tool to Target Protein–Protein Interactions

  • Chapter
  • First Online:
Disruption of Protein-Protein Interfaces

Abstract

NMR spectroscopy plays a dual role in projects aimed at targeting protein–protein interactions (PPIs).While it has been extensively validated as an efficient technique for the initial screening and identification of weakly interacting fragments and for subsequently guiding their optimization into molecules with higher affinity and more favorable drug-like properties, it also represents an extremely powerful tool to monitor the formation of protein–protein complexes in solution and to obtain structural information on these adducts. It allows the identification of the protein interfaces and, in some cases, provides intermolecular distance and orientational restraints that lead to the definition of the relative arrangement of the two proteins. In particular, it constitutes the structural technique of choice for studying weak/ transient protein–protein interactions, which represent the natural targets for drug discovery projects addressing PPIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowe AJ (2011) Ultra-weak reversible protein–protein interactions. Methods 54:157–166

    Article  CAS  Google Scholar 

  2. Schreiber G, Haran G (2009) Zhou HX (2009) Fundamental aspects of protein–protein association kinetics. Chem Rev 109:839–860

    Article  CAS  Google Scholar 

  3. Alsallaq R, Zhou HX (2008) Electrostatic rate enhancement and transient complex of protein–protein association. Proteins 71:320–335

    Article  CAS  Google Scholar 

  4. Archakov AI, Govorun VM, Dubanov AV, Ivanov YD, Veselovsky AV, Lewi P, Janssen P (2003) Protein–protein interactions as a target for drugs in proteomics. Proteomics 3:380–391

    Article  CAS  Google Scholar 

  5. Prudencio M, Ubbink M (2004) Transient complexes of redox proteins: structural and dynamic details from NMR studies. J Mol Recognit 17:524–539

    Article  CAS  Google Scholar 

  6. Corzo J (2006) Time, the forgotten dimension of ligand binding teaching. Biochem Mol Biol Educ 34:413–416

    Article  CAS  Google Scholar 

  7. Jensen MR, Ortega-Roldan JL, Salmon L, van Nuland N, Blackledge M (2011) Characterizing weak protein–protein complexes by NMR residual dipolar couplings. Eur Biophys J 40:1371–1381

    Article  CAS  Google Scholar 

  8. Takeuchi K, Wagner G (2006) NMR studies of protein interactions. Curr Opin Struct Biol 16:109–117

    Article  CAS  Google Scholar 

  9. Bonvin AM, Boelens R, Kaptein R (2005) NMR analysis of protein interactions. Curr Opin Chem Biol 9:501–508

    Article  CAS  Google Scholar 

  10. Zuiderweg ER (2002) Mapping protein–protein interactions in solution by NMR spectroscopy. Biochemistry 41:1–7

    Article  CAS  Google Scholar 

  11. Crowley PB, Ubbink M (2003) Close encounters of the transient kind: protein interactions in the photosynthetic redox chain investigated by NMR spectroscopy. Acc Chem Res 36:723–730

    Article  CAS  Google Scholar 

  12. Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42:864–890

    Article  CAS  Google Scholar 

  13. Zerbe O, Mannhold R, Kubinyi H, Folkers G (2003) BioNMR in drug research. Wiley-VCH, Zurich

    Google Scholar 

  14. Vaynberg J, Qin J (2006) Weak protein–protein interactions as probed by NMR spectroscopy. Trends Biotechnol 24:22–27

    Article  CAS  Google Scholar 

  15. Garrett DS, Seok YJ, Peterkofsky A, Clore GM, Gronenborn AM (1997) Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the escherichia coli phosphotransferase system. Biochemistry 36:4393–4398

    Article  CAS  Google Scholar 

  16. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  CAS  Google Scholar 

  17. de Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897

    Article  Google Scholar 

  18. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  CAS  Google Scholar 

  19. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  CAS  Google Scholar 

  20. Riek R, Wider G, Pervushin K, Wüthrich K (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci USA 96:4918–4923

    Article  CAS  Google Scholar 

  21. Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K (2002) NMR analysis of a 900 K GroEL GroES complex. Nature 418:207–211

    Article  CAS  Google Scholar 

  22. Griswold IJ, Dahlquist FW (2002) Bigger is better: megadalton protein NMR in solution. Nat Struct Biol 9:567–568

    Article  CAS  Google Scholar 

  23. Horst R, Bertelsen EB, Fiaux J, Wider G, Horwich AL, Wütrich K (2005) Direct NMR observation of a substrate protein bound to the chaperonin. GroEL. Proc Natl Acad Sci USA 102: 12748-12753

    Article  CAS  Google Scholar 

  24. Caillet-Saguy C, Piccioli M, Turano P, Izadi-Pruneyre N, Delepierre M, Bertini I, Lecroisey A (2009) Mapping the Interaction between the Hemophore HasA and its outer membrane receptor has R using CRINEPT-TROSY NMR spectroscopy. J Am Chem Soc 131:1736–1744

    Article  CAS  Google Scholar 

  25. Debye PJW (1929) Polar molecules. Dover Publications Inc

    Google Scholar 

  26. Ikura M, Bax A (1992) Isotope-filtered 2D NMR of protein-peptide complex: study of Skeletal muscle myosin light chain kinase. J Am Chem Soc 114:2433–2440

    Article  CAS  Google Scholar 

  27. Banci L, Bertini I, Cefaro C, Cenacchi L, Ciofi-Baffoni S, Felli IC, Gallo A, Gonnelli L, Luchinat E, Sideris DP, Tokatlidis K (2010) Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import. Proc Natl Acad Sci USA 107:20190–20195

    Article  CAS  Google Scholar 

  28. Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540

    Article  CAS  Google Scholar 

  29. Capozzi F, Casadei F, Luchinat C (2006) EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. J Biol Inorg Chem 11:949–962

    Article  CAS  Google Scholar 

  30. Bertini I, Calderone V, Cerofolini L, Fragai M, Geraldes CFGC, Hermann P, Luchinat C, Parigi G, Teixeira JMC (2012) The catalytic domain of MMP-1 studied through tagged lanthanides. FEBS Lett 586:557–567

    Article  CAS  Google Scholar 

  31. Volkov AN, Ubbink M, Van Nuland NAJ (2010) Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy. J Biomol NMR 48:225–236

    Article  CAS  Google Scholar 

  32. Williamson MP, Marion D, Wuthrich K (1984) Secondary structure in the solution conformation of the proteinase inhibitor IIA from bull seminal plasma by nuclear magnetic resonance. J Mol Biol 173:341–359

    Article  CAS  Google Scholar 

  33. O’Connell MR, Gamsjaeger R, Mackay JP (2009) The structural analysis of protein–protein interactions by NMR spectroscopy. Proteomics 9:5224–5232

    Article  Google Scholar 

  34. Vaynberg J, Fukuda T, Chen K, Vinogradova O, Velyvis A, Tu Y, Ng L, Wu C, Qin J (2005) Structure of an ultraweak protein–protein complex and its crucial role in regulation of cell morphology and motility. Mol Cell 17:513–523

    Article  CAS  Google Scholar 

  35. Wang JH, Meijers R, Xiong Y, Liu JH, Sakihama T, Zhang R, Joachimiak A, Reinherz EL (2001) Crystal structure of the human CD4N-terminal two-domain fragment complexed to a class II MHC molecule. Proc Natl Acad Sci USA 98:10799–10804

    Article  CAS  Google Scholar 

  36. Kang RS, Daniels CM, Francis SA, Shih SC, Salerno WJ, Hicke L, Radhakrishnan I (2003) Solution structure of a CUE-ubiquitin complex reveals a conserved mode of ubiquitin binding. Cell 113:621–630

    Article  CAS  Google Scholar 

  37. Sundquist WI, Schubert HL, Kelly BN, Hill GC, Holton JM, Hill CP (2004) Ubiquitin recognition by the human TSG101 protein. Mol Cell 13:783–789

    Article  CAS  Google Scholar 

  38. Ortega-Roldan JL, Jensen MR, Brutscher B, Azuaga AI, Blackledge M, van Nuland NA (2009) Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C: ubiquitin complex. Nucleic Acids Res 37:e70

    Article  Google Scholar 

  39. Banci L, Bertini I, Calderone V, Della Malva N, Felli IC, Neri S, Pavelkova A, Rosato A (2009) Copper(I)-mediated protein–protein interactions result from suboptimal interaction surfaces. Biochem J 422:37–42

    Article  CAS  Google Scholar 

  40. Banci L, Bertini I, McGreevy KS, Rosato A (2010) Molecular recognition in copper trafficking. Nat Prod Rep 27:695–710

    Article  CAS  Google Scholar 

  41. Banci L, Bertini I, Cantini F, Ciofi-Baffoni S (2010) Cellular copper distribution: a mechanistic systems biology approach. Cell Mol Life Sci 67:2563–2589

    Article  CAS  Google Scholar 

  42. Guiles RD, Sarma S, DiGate RJ, Banville D, Basus VJ, Kuntz ID, Waskell L (1996) Pseudocontact shifts used in the restraint of the solution structures of electron transfer complexes. Nat Struct Biol 3:333–339

    Article  CAS  Google Scholar 

  43. Ubbink M, Lian LY, Modi S, Evans PA, Bendall DS (1996) Analysis of the 1H-NMR chemical shifts of Cu(I)−, Cu(II)- and Cd-substituted pea plastocyanin. Metal-dependent differences in the hydrogen-bond network around the copper site. Eur J Biochem 242:132–147

    Article  CAS  Google Scholar 

  44. Hulsker R, Baranova MV, Bullerjahn GS, Ubbink M (2008) Dynamics in the transient complex of plastocyanin-cytochrome f from Prochlorothrix hollandica. J Am Chem Soc 130:1985–1991

    Article  CAS  Google Scholar 

  45. Diaz-Moreno I, Diaz-Quintana A, De la Rosa MA, Ubbink M (2005) Structure of the complex between plastocyanin and cytochrome f from the cyanobacterium nostoc Sp. PCC 7119 as determined by paramagnetic NMR. J Biol Chem 280:18908–18915

    Article  CAS  Google Scholar 

  46. Bashir Q, Scanu S, Ubbink M (2011) Dynamics in electron transfer protein complexes. FEBS J 278:1391–1400

    Article  CAS  Google Scholar 

  47. Tang C, Iwahara J, Clore GM (2006) Visualization of transient encounter complexes in protein–protein association. Nature 444:383–386

    Article  CAS  Google Scholar 

  48. Volkov AN, Worrall JAR, Holtzmann E, Ubbink M (2006) Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc Natl Acad Sci USA 103:18945–18950

    Article  CAS  Google Scholar 

  49. Xu X, Reinle W, Hannemann F, Konarev PV, Svergun DI, Bernhardt R, Ubbink M (2008) Dynamics in a pure encounter complex of two proteins studied by solution scattering and paramagnetic NMR spectroscopy. J Am Chem Soc 130:6395–6403

    Article  CAS  Google Scholar 

  50. Liang ZX, Nocek JM, Huang K, Hayes RT, Kurnikov IV, Beratan DN, Hoffman BM (2002) Dynamic docking and electron transfer between Zn-myoglobin and cytochrome b(5). J Am Chem Soc 124:6849–6859

    Article  CAS  Google Scholar 

  51. Volkov AN, Ferrari D, Worrall JA, Bonvin AM, Ubbink M (2005) The orientations of cytochrome c in the highly dynamic complex with cytochrome b5 visualized by NMR and docking using HADDOCK. Protein Sci 14:799–811

    Article  CAS  Google Scholar 

  52. Liang ZX, Kurnikov IV, Nocek JM, Mauk AG, Beratan DN, Hoffman BM (2004) Dynamic docking and electron-transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein–protein complexes. J Am Chem Soc 126:2785–2798

    Article  CAS  Google Scholar 

  53. Worrall JA, Liu A, Crowley PB, Nocek JM, Hoffman BM, Ubbink M (2002) Myoglobin and cytochrome b5: a nuclear magnetic resonance study of a highly dynamic protein complex. Biochemistry 41:11721–11730

    Article  CAS  Google Scholar 

  54. Worrall JA, Reinle W, Bernhardt R, Ubbink M (2003) Transient protein interactions studied by NMR spectroscopy: the case of cytochrome C and adrenodoxin. Biochemistry 42:7068–7076

    Article  CAS  Google Scholar 

  55. Hoffman BM, Celis LM, Cull DA, Patel AD, Seifert JL, Wheeler KE, Wang J, Yao J, Kurnikov IV, Nocek JM (2005) Differential influence of dynamic processes on forward and reverse electron transfer across a protein–protein interface. Proc Natl Acad Sci USA 102:3564–3569

    Article  CAS  Google Scholar 

  56. Ubbink M, Bendall DS (1997) Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis. Biochemistry 36:6326–6335

    Article  CAS  Google Scholar 

  57. Vlasie MD, Fernández-Busnadiego R, Prudêncio M, Ubbink M (2008) Conformation of pseudoazurin in the 152 kDa electron transfer complex with nitrite reductase determined by paramagnetic NMR. J Mol Biol 375:1405–1415

    Article  CAS  Google Scholar 

  58. Ubbink M, Ejdebaeck M, Karlsson BG, Bendall DS (1998) The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 6:323–335

    Article  CAS  Google Scholar 

  59. Volkov AN, Worrall JAR, Holtzmann E, Ubbink M (2006) Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc Natl Acad Sci USA 103:18945–18950

    Article  CAS  Google Scholar 

  60. Bashir Q, Volkov AN, Ullmann GM, Ubbink M (2010) Visualization of the encounter ensemble of the transient electron transfer complex of cytochrome c and cytochrome c peroxidase. J Am Chem Soc 132:241–247

    Article  CAS  Google Scholar 

  61. Fawzi NL, Doucleff M, Suh JY, Clore GM (2010) Mechanistic details of a protein–protein association pathway revealed by paramagnetic relaxation enhancement titration measurements. Proc Natl Acad Sci USA 107:1379–1384

    Article  CAS  Google Scholar 

  62. Villareal VA, Spirig T, Robson SA, Liu M, Lei B, Clubb RT (2011) Transient weak protein–protein complexes transfer heme across the cell wall of Staphylococcus aureus. J Am Chem Soc 133:14176–14179

    Article  CAS  Google Scholar 

  63. Nooren IMA, Thornton JM (2003) Structural characterisation and functional significance of transient protein–protein interactions. J Mol Biol 325:991–1018

    Article  CAS  Google Scholar 

  64. Veselovsky AV, Archakov AI (2007) Inhibitors of protein–protein interactions as potential drugs. Curr Comput: Aided Drug Des 3:51–58

    Article  CAS  Google Scholar 

  65. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov 3:301–317

    Article  CAS  Google Scholar 

  66. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386

    Article  CAS  Google Scholar 

  67. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9

    Article  CAS  Google Scholar 

  68. Agamennone M, Cesari L, Lalli D, Turlizzi E, Del Conte R, Turano P, Mangani S, Padova A (2010) Fragmenting the S100B–p53 interaction—Combined virtual/biophysical screening approaches to identify ligands. Chem Med Chem 5:428–435

    CAS  Google Scholar 

  69. Rustandi RR, Baldisseri DM, Weber DJ (2000) Structure of the negative regulatory domain of p53 bound to S100B (betabeta). Nat Struct Biol 7:570–574

    Article  CAS  Google Scholar 

  70. Inman KG, Yang R, Rustandi RR, Miller KE, Baldisseri DM, Weber DJ (2002) Solution NMR structure of S100B bound to the high-affinity target peptide TRTK-12. J Mol Biol 324:1003–1014

    Article  CAS  Google Scholar 

  71. Ivanenkov VV, Jamieson GA Jr, Gruenstein E, Dimlich RV (1995) Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein, CapZ. J Biol Chem 270:14651–14658

    Article  CAS  Google Scholar 

  72. Gaffen SL (2001) Signaling domains of the interleukin 2 receptor. Cytokine 14:63–77

    Article  CAS  Google Scholar 

  73. Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541

    Article  CAS  Google Scholar 

  74. Zhong S, Macias AT, Mackerell AD Jr (2007) Computational identification of inhibitors of protein–protein interactions. Curr Top Med Chem 7:63–82

    Article  CAS  Google Scholar 

  75. Gonzalez-Ruiz D, Gohlke H (2006) Targeting protein–protein interactions with small molecules: challenges and perspectives for computational binding epitope detection and ligand finding. Curr Med Chem 13:2607–2625

    Article  CAS  Google Scholar 

  76. DeLano WL (2002) Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol 12:14–20

    Article  CAS  Google Scholar 

  77. Kay LE (1998) Protein dynamics from NMR. Nat Struct Biol 5:513–517

    Article  CAS  Google Scholar 

  78. Ishima R, Torchia DA (2000) Protein dynamics from NMR. Nat Struct Biol 7:740–743

    Article  CAS  Google Scholar 

  79. Pellecchia M, Bertini I, Cowburn D, Dalvit C, Giralt E, Jahnke W, James TL, Homans SW, Kessler H, Luchinat C, Meyer B, Oschkinat H, Peng J, Schwalbe H, Siegal G (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745

    Article  CAS  Google Scholar 

  80. Stark JL, Powers R (2011) Application of NMR and molecular docking in structure-based drug discovery. Top Curr Chem. doi:10.1007/128_2011_213

    Google Scholar 

  81. Fesik SW, Zuiderweg ER, Olejniczak ET, Gampe RT Jr (1990) NMR methods for determining the structures of enzyme/inhibitor complexes as an aid in drug design. Biochem Pharmacol 40:161–167

    Article  CAS  Google Scholar 

  82. Meinecke R, Meyer B (2001) Determination of the binding specificity of an integral membrane protein by saturation transfer difference NMR: RGD peptide ligands binding to integrin alphaIIbbeta3. J Med Chem 44:3059-3065

    Article  CAS  Google Scholar 

  83. Wang YS, Liu D, Wyss DF (2004) Competition STD NMR for the detection of high-affinity ligands and NMR-based screening. Magn Reson Chem 42:485–489

    Article  CAS  Google Scholar 

  84. Dalvit C, Fogliatto G, Stewart A, Veronesi M, Stockman BJ (2001) Water LOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR 21:349–359

    Article  CAS  Google Scholar 

  85. Wu D, Chen A, Johnson CS (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson A 115:260–264

    Article  CAS  Google Scholar 

  86. Dalvit C, Fasolini M, Flocco M, Knapp S, Pevarello P, Veronesi M (2002) NMR-based screening with competition water-ligand observed via gradient spectroscopy experiments: detection of high-affinity ligands. J Med Chem 45:2610–2614

    Article  CAS  Google Scholar 

  87. Assfalg M, Bertini I, Del Conte R, Giachetti A, Turano P (2007) Cytochrome c and organic molecules: the solution structure of the para-aminophenol adduct. Biochemistry 46:6232–6238

    Article  CAS  Google Scholar 

  88. Bertini I, Calderone V, Cosenza M, Fragai M, Lee Y-M, Luchinat C, Mangani S, Terni B, Turano P (2005) Conformational variability of MMPs: beyond a single 3D structure. Proc Natl Acad Sci USA 102:5334–5339

    Article  CAS  Google Scholar 

  89. Isaksson J, Nystroem S, Derbishire W, Wallberg H, Agback T, Kovacs H, Bertini I, Giachetti A, Luchinat C (2009) Does a fast nuclear magnetic resonance spectroscopy- and X-ray crystallography hybrid approach provide reliable structural information of ligand-protein complexes? A case study of metalloproteinases. J Med Chem 52:1712–1722

    Article  CAS  Google Scholar 

  90. Constantine KL, Davis ME, Metzler WJ, Mueller L, Claus BL (2006) Protein-ligand NOE matching: a high-throughput method for binding pose evaluation that does not require protein NMR resonance assignments. J Am Chem Soc 128:7252–7263

    Article  CAS  Google Scholar 

  91. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  Google Scholar 

  92. Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275:983–986

    Article  CAS  Google Scholar 

  93. Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J, Swift K, Matayoshi ED, Zhang H, Thompson CB, Fesik SW (2000) Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci 9:2528–2534

    CAS  Google Scholar 

  94. Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK, Nettesheim DG, Rosenberg SH, Shen W, Thomas S, Wang X, Zanze I, Zhang H, Fesik SW (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J Med Chem 49:656–663

    Article  CAS  Google Scholar 

  95. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  CAS  Google Scholar 

  96. Petros AM, Huth JR, Oost T, Park CM, Ding H, Wang X, Zhang H, Nimmer P, Mendoza R, Sun C, Mack J, Walter K, Dorwin S, Gramling E, Ladror U, Rosenberg SH, Elmore SW, Fesik SW, Hajduk PJ (2010) Discovery of a potent and selective Bcl-2 inhibitor using SAR by NMR. Bioorg Med Chem Lett 20:6587–6591

    Article  CAS  Google Scholar 

  97. Bertini I, Chevance S, Del Conte R, Lalli D, Turano P (2011) The anti-apoptotic Bcl-xL protein, a new piece in the puzzle of cytochrome c interactome. PLoS ONE 6:e18329

    Article  CAS  Google Scholar 

  98. Arendt Y, Bhaumik A, Del Conte R, Luchinat C, Mori M, Porcu M (2007) Fragment docking to S100 proteins reveals a wide diversity of weak interaction sites. Chem Med Chem 2:1648–1654

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Turano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Del Conte, R., Lalli, D., Turano, P. (2013). NMR as a Tool to Target Protein–Protein Interactions. In: Mangani, S. (eds) Disruption of Protein-Protein Interfaces. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37999-4_4

Download citation

Publish with us

Policies and ethics