Skip to main content
Log in

Cellular copper distribution: a mechanistic systems biology approach

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Copper is an essential but potentially harmful trace element required in many enzymatic processes involving redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by regulating copper transport through the copper import CTR proteins and the copper exporters ATP7A and ATP7B. Once copper is imported into the cell, several pathways involving a number of copper proteins are responsible for trafficking it specifically where it is required for cellular life, thus avoiding the release of harmful free copper ions. In this study we review recent progress made in understanding the molecular mechanisms of copper transport in cells by analyzing structural features of copper proteins, their mode of interaction, and their thermodynamic and kinetic parameters, thus contributing to systems biology of copper within the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Linder MC (1991) Biochemistry of copper. Plenum Press, New York

    Google Scholar 

  2. Andreini C, Banci L, Bertini I, Rosato A (2008) Occurence of copper through the three domains of life: a bioinformatic approach. J Proteome Res 1:209–216

    Google Scholar 

  3. Horn D, Barrientos A (2008) Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB. Life 60:421–429

    PubMed  Google Scholar 

  4. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    PubMed  Google Scholar 

  5. O’Halloran TV, Culotta VC (2000) Metallochaperones: an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    PubMed  Google Scholar 

  6. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    PubMed  Google Scholar 

  7. Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185

    PubMed  Google Scholar 

  8. Dameron CT, Harrison MD (1998) Mechanisms for protection against copper toxicity. Am J Clin Nutr 67:1091S–1097S

    PubMed  Google Scholar 

  9. De Feo CJ, Aller SG, Unger VM (2007) A structural perspective on copper uptake in eukaryotes. Biometals 20:705–716

    PubMed  Google Scholar 

  10. Nose Y, Kim BE, Thiele DJ (2006) Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab 4:235–244

    PubMed  Google Scholar 

  11. Dancis A, Haile D, Yuan DS, Klausner RD (1994) The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem 269:25660–25667

    PubMed  Google Scholar 

  12. Dancis A, Yuan DS, Haile D, Askwith C, Elde D, Moehle C, Kaplan J, Klausner RD (1994) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393–402

    PubMed  Google Scholar 

  13. Knight SA, Labbe S, Kwon LF, Kosman DJ, Thiele DJ (1996) A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10:1917–1929

    PubMed  Google Scholar 

  14. Lee J, Pena MM, Nose Y, Thiele DJ (2002) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387

    PubMed  Google Scholar 

  15. Hassett R, Kosman DJ (1995) Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem 270:128–134

    PubMed  Google Scholar 

  16. Martins LJ, Jensen LT, Simon JR, Keller GL, Winge DR (1998) Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273:23716–23721

    PubMed  Google Scholar 

  17. De Feo CJ, Aller SG, Siluvai GS, Blackburn NJ, Unger VM (2009) Three-dimensional structure of the human copper transporter hCTR1. Proc Natl Acad Sci USA 106:4237–4242

    PubMed  Google Scholar 

  18. Puig S, Lee J, Lau M, Thiele DJ (2002) Biochemical and genetic analyses of yeast and human high-affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277:26021–26030

    PubMed  Google Scholar 

  19. Eisses JF, Kaplan JH (2005) The mechanism of copper uptake mediated by human CTR1: a mutational analysis. J Biol Chem 280:37159–37168

    PubMed  Google Scholar 

  20. Xiao Z, Loughlin F, George GN, Howlett GJ, Wedd AG (2004) C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking. J Am Chem Soc 126:3081–3090

    PubMed  Google Scholar 

  21. Wu X, Sinani D, Kim H, Lee J (2009) Copper transport activity of yeast Ctr1 is down-regulated via its C terminus in response to excess copper. J Biol Chem 284:4112–4122

    PubMed  Google Scholar 

  22. Xiao Z, Wedd AG (2002) A C-terminal domain of the membrane copper pump Ctr1 exchanges copper(I) with the copper chaperone Atx1. Chem Commun 6:588–589

    Google Scholar 

  23. Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metal sensors and metallochaperones. Acc Chem Res 38:775–783

    PubMed  Google Scholar 

  24. Osman D, Cavet JS (2008) Copper homeostasis in bacteria. Adv Appl Microbiol 65:217–247

    PubMed  Google Scholar 

  25. Solioz M, Abicht HK, Mermod M, Mancini S (2010) Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem 15:3–14

    PubMed  Google Scholar 

  26. Sevcenco AM, Krijger GC, Pinkse MW, Verhaert PD, Hagen WR, Hagedoorn PL (2009) Development of a generic approach to native metalloproteomics: application to the quantitative identification of soluble copper proteins in Escherichia coli. J Biol Inorg Chem 14:631–640

    PubMed  Google Scholar 

  27. Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, Huffman DL, O’Halloran TV (2002) Metallochaperones and metal transporting ATPases: a comparative analysis of sequences and structures. Genome Res 12:255–271

    PubMed  Google Scholar 

  28. Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195

    PubMed  Google Scholar 

  29. Chillappagari S, Miethke M, Trip H, Kuipers OP, Marahiel MA (2009) Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis. J Bacteriol 191:2362–2370

    PubMed  Google Scholar 

  30. Lewinson O, Lee AT, Rees DC (2009) A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc Natl Acad Sci USA 106:4677–4682

    PubMed  Google Scholar 

  31. Cavet JS, Borrelly GP, Robinson NJ (2003) Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev 27:165–181

    PubMed  Google Scholar 

  32. Tottey S, Rich PR, Rondet SAM, Robinson NJ (2001) Two Menkes-type ATPases supply copper for photosynthesis in Synechocystis PCC 6803. J Biol Chem 276:19999–20004

    PubMed  Google Scholar 

  33. Tottey S, Rondet SA, Borrelly GP, Robinson PJ, Rich PR, Robinson NJ (2002) A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J Biol Chem 277:5490–5497

    PubMed  Google Scholar 

  34. Banci L, Bertini I, Ciofi-Baffoni S, Kandias NG, Spyroulias GA, Su XC, Robinson NJ, Vanarotti M (2006) The delivery of copper for thylakoid import observed by NMR. Proc Natl Acad Sci USA 103:8325

    Google Scholar 

  35. Banci L, Bertini I, Ciofi-Baffoni S, Su XC, Borrelly GP, Robinson NJ (2004) Solution structures of a cyanobacterial metallochaperone: insight into an atypical copper-binding motif. J Biol Chem 279:27502–27510

    PubMed  Google Scholar 

  36. Borrelly GP, Blindauer CA, Schmid R, Butler CS, Cooper CE, Harvey I, Sadler PJ, Robinson NJ (2004) A novel copper site in a cyanobacterial metallochaperone. Biochem J 378:293–297

    PubMed  Google Scholar 

  37. Arnesano F, Banci L, Bertini I, Huffman DL, O’Halloran TV (2001) Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. Biochemistry 40:1528–1539

    PubMed  Google Scholar 

  38. Anastassopoulou J, Banci L, Bertini I, Cantini F, Katsari E, Rosato A (2004) Solution structure of the apo-and copper(I) loaded human metallo-chaperone HAH1. Biochemistry 43:13046–13053

    PubMed  Google Scholar 

  39. Banci L, Bertini I, Ciofi-Baffoni S, Gonnelli L, Su XC (2003) Structural basis for the function of the N terminal domain of the ATPase CopA from Bacillus subtilis. J Biol Chem 278:50506–50513

    PubMed  Google Scholar 

  40. Banci L, Bertini I, Ciofi-Baffoni S, Huffman DL, O’Halloran TV (2001) Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(I)-loaded states. J Biol Chem 276:8415–8426

    PubMed  Google Scholar 

  41. Banci L, Bertini I, Ciofi-Baffoni S, Poggi L, Vanarotti M, Tottey S, Waldron KJ, Robinson NJ (2009) NMR structural analysis of the soluble domain of ZiaA-ATPase and the basis of selective interactions with copper metallochaperone Atx1. J Biol Inorg Chem 15:87–98

    PubMed  Google Scholar 

  42. Borrelly GPM, Rondet SA, Tottey S, Robinson NJ (2004) Chimeras of P-type ATPases and their transcriptional regulators: contributions of a cytosolic amino-terminal domain to metal specificity. Mol Microbiol 53:217–227

    PubMed  Google Scholar 

  43. Tottey S, Waldron KJ, Firbank SJ, Reale B, Bessant C, Sato K, Cheek TR, Gray J, Banfield MJ, Dennison C, Robinson NJ (2008) Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455:1138–1142

    PubMed  Google Scholar 

  44. Yang L, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proc Natl Acad Sci USA 102:11179–11184

    PubMed  Google Scholar 

  45. Klomp LW, Lin SJ, Yuan D, Klausner RD, Culotta VC, Gitlin JD (1997) Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 272:9221–9226

    PubMed  Google Scholar 

  46. Chelly J, Tumer Z, Tonnesen T, Petterson A, Ishikawa-Brush Y, Tommerup N, Monaco AP, Horn N (1993) Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet 3:14–19

    PubMed  Google Scholar 

  47. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genet 5:327–337

    PubMed  Google Scholar 

  48. Itoh S, Kim HW, Nakagawa O, Ozumi K, Lessner SM, Aoki H, Akram K, McKinney MD, Ushio-Fukai M, Fukai T (2008) Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J Biol Chem 283:9157–9167

    PubMed  Google Scholar 

  49. McRae R, Lai B, Fahrni CJ (2010) Copper redistribution in Atox1-deficient mouse fibroblast cells. J Biol Inorg Chem 15:99–105

    PubMed  Google Scholar 

  50. Mercer JF, Barnes N, Stevenson J, Strausak D, Llanos RM (2003) Copper-induced trafficking of the cU-ATPases: a key mechanism for copper homeostasis. Biometals 16:175–184

    PubMed  Google Scholar 

  51. Petris MJ, Mercer JF (1999) The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Hum Mol Genet 8:2107–2115

    PubMed  Google Scholar 

  52. Schaefer M, Hopkins RG, Failla ML, Gitlin JD (1999) Hepatocyte-specific localization and copper-dependent trafficking of the Wilson’s disease protein in the liver. Am J Physiol 276:G639–G646

    PubMed  Google Scholar 

  53. Monty JF, Llanos RM, Mercer JF, Kramer DR (2005) Copper exposure induces trafficking of the menkes protein in intestinal epithelium of ATP7A transgenic mice. J Nutr 135:2762–2766

    PubMed  Google Scholar 

  54. Barnes N, Tsivkovskii R, Tsivkovskaia N, Lutsenko S (2005) The copper-transporting ATPases, menkes and wilson disease proteins, have distinct roles in adult and developing cerebellum. J. Biol. Chem. 280:9640–9645

    PubMed  Google Scholar 

  55. Barnes N, Bartee MY, Braiterman L, Gupta A, Ustiyan V, Zuzel V, Kaplan JH, Hubbard AL, Lutsenko S (2009) Cell-specific trafficking suggests a new role for renal ATP7B in the intracellular copper storage. Traffic 10:767–779

    PubMed  Google Scholar 

  56. Kodama H, Murata Y (1999) Molecular genetics and pathophysiology of Menkes disease. Pediatr Int 41:430–435

    PubMed  Google Scholar 

  57. Thomas GR, Forbes JR, Roberts EA, Walshe JM, Cox DW (1995) The Wilson disease gene: spectrum of mutations and their consequences. Nature Genet 9:210–216

    PubMed  Google Scholar 

  58. Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–535

    PubMed  Google Scholar 

  59. Moller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1–51

    PubMed  Google Scholar 

  60. Post RL, Hegyvary C, Kume S (1972) Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem 247:6530–6540

    PubMed  Google Scholar 

  61. Albers RW (1967) Biochemical aspects of active transport. Annu Rev Biochem 36:727–756

    PubMed  Google Scholar 

  62. Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    PubMed  Google Scholar 

  63. Thever MD, Saier MH Jr (2009) Bioinformatic characterization of p-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes. J Membr Biol 229:115–130

    PubMed  Google Scholar 

  64. Sazinsky MH, Agarwal S, Argüello JM, Rosenzweig AC (2006) Structure of the actuator domain from the Archaeoglobus fulgidus Cu(+)-ATPase. Biochemistry 45:9949–9955

    PubMed  Google Scholar 

  65. Banci L, Bertini I, Cantini F, Migliardi M, Natile G, Nushi F, Rosato A (2009) Solutions structures of the actuator domain of ATP7A and ATP7B, the Menkes and Wilson disease proteins. Biochemistry 48:7849–7855

    PubMed  Google Scholar 

  66. Dmitriev OY, Tsivkovskii R, Abilgaard F, Morgan CT, Markley JL, Lutsenko S (2006) Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations. Proc Natl Acad Sci USA 103:5302–5307

    PubMed  Google Scholar 

  67. Banci L, Bertini I, Cantini F, Inagaki S, Migliardi M, Rosato A (2009) The binding mode of ATP revealed by the solution structure of the N-domain of human ATP7A. J Biol Chem 285:2534–2537

    Google Scholar 

  68. Sazinsky MH, Mandal AK, Argüello JM, Rosenzweig AC (2006) Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase. J Biol Chem 281:11161–11166

    PubMed  Google Scholar 

  69. Lubben M, Guldenhaupt J, Zoltner M, Deigweiher K, Haebel P, Urbanke C, Scheidig AJ (2007) Sulfate acts as phosphate analog on the monomeric catalytic fragment of the CPx-ATPase CopB from Sulfolobus solfataricus. J Mol Biol 369:368–385

    PubMed  Google Scholar 

  70. Tsuda T, Toyoshima C (2009) Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase. EMBO J 28:1782–1791

    PubMed  Google Scholar 

  71. Gitschier J, Moffat B, Reilly D, Wood WI, Fairbrother WJ (1998) Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nature Struct Biol 5:47–54

    PubMed  Google Scholar 

  72. Banci L, Bertini I, Del Conte R, D’Onofrio M, Rosato A (2004) Solution structure and backbone dynamics of the Cu(I) and apo-forms of the second metal-binding domain of the Menkes protein ATP7A. Biochemistry 43:3396–3403

    PubMed  Google Scholar 

  73. Banci L, Bertini I, Chasapis C, Ciofi-Baffoni S, Hadjiliadis N, Rosato A (2005) An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein. FEBS J 272:865–871

    PubMed  Google Scholar 

  74. Banci L, Bertini I, Cantini F, Migliardi M, Rosato A, Wang S (2005) An atomic level investigation of the disease-causing A629P mutant of the Menkes protein ATP7A. J Mol Biol 352:409–417

    PubMed  Google Scholar 

  75. DeSilva TM, Veglia G, Opella SJ (2005) Solution structures of the reduced and Cu(I) bound forms of the first metal binding sequence of ATP7A associated with Menkes disease. Proteins 61:1038–1049

    PubMed  Google Scholar 

  76. Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    PubMed  Google Scholar 

  77. Olesen C, Sorensen TL, Nielsen RC, Moller JV, Nissen P (2004) Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306:2251–2255

    PubMed  Google Scholar 

  78. Hilge M, Siegal G, Vuister GW, Guntert P, Gloor SM, Abrahams JP (2003) ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase. Nat Struct Biol 10:468–474

    PubMed  Google Scholar 

  79. Haupt M, Bramkamp M, Heller M, Coles M, Deckers-Hebestreit G, Herkenhoff-Hesselmann B, Altendorf K, Kessler H (2006) The holo-form of the nucleotide binding domain of the KdpFABC complex from Escherichia coli reveals a new binding mode. J Biol Chem 281:9641–9649

    PubMed  Google Scholar 

  80. Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295

    PubMed  Google Scholar 

  81. Banci L, Bertini I, Cantini F, Massagni C, Migliardi M, Rosato A (2009) An NMR study of the interaction of the N-terminal cytoplasmic tail of the Wilson disease protein with copper(I)-HAH1. J Biol Chem 284:9354–9360

    PubMed  Google Scholar 

  82. Banci L, Bertini I, Cantini F, Rosenzweig AC, Yatsunyk LA (2008) Metal binding domains 3 and 4 of the Wilson disease protein: solution structure and interaction with the copper(I) chaperone HAH1. Biochemistry 47:7423–7429

    PubMed  Google Scholar 

  83. Banci L, Bertini I, Cantini F, Della Malva N, Migliardi M, Rosato A (2007) The different intermolecular interactions of the soluble copper-binding domains of the Menkes protein, ATP7A. J Biol Chem 282:23140–23146

    PubMed  Google Scholar 

  84. Banci L, Bertini I, Cantini F, Chasapis C, Hadjiliadis N, Rosato A (2005) A NMR study of the interaction of a three-domain construct of ATP7A with copper(I) and copper(I)-HAH1: the interplay of domains. J Biol Chem 280:38259–38263

    PubMed  Google Scholar 

  85. Achila D, Banci L, Bertini I, Bunce J, Ciofi-Baffoni S, Huffman DL (2006) Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAH1 in copper uptake. Proc Natl Acad Sci USA 103:5729–5734

    PubMed  Google Scholar 

  86. Yatsunyk LA, Rosenzweig AC (2007) Copper(I) binding and transfer by the N-terminus of the Wilson disease protein. J Biol Chem 282:8622–8631

    PubMed  Google Scholar 

  87. Wernimont AK, Huffman DL, Lamb AL, O’Halloran TV, Rosenzweig AC (2000) Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol 7:766–771

    PubMed  Google Scholar 

  88. Ralle M, Lutsenko S, Blackburn NJ (2003) X-ray absorption spectroscopy of the copper chaperone HAH1 reveals a linear two-coordinate Cu(I) center capable of adduct formation with exogenous thiols and phosphines. J Biol Chem 278:23163–23170

    PubMed  Google Scholar 

  89. Banci L, Bertini I, Cantini F, Della Malva N, Rosato A, Herrmann T, Wüthrich K (2006) Solution structure and intermolecular interactions of the third metal-binding domain of ATP7A, the Menkes disease protein. J Biol Chem 281:29141–29147

    PubMed  Google Scholar 

  90. Cantini F, Banci L, Magnani D, Solioz M (2009) The copper-responsive repressor CopR of Lactococcus lactis is a winged helix type DNA binding protein. Biochem J 417:493–499

    PubMed  Google Scholar 

  91. Tanchou V, Gas F, Urvoas A, Cougouluegne F, Ruat S, Averseng O, Quemeneur E (2004) Copper-mediated homo-dimerisation for the HAH1 metallochaperone. Biochem Biophys Res Commun 325:388–394

    PubMed  Google Scholar 

  92. Winge DR, Jensen LT, Srinivasan C (1998) Metal-ion regulation of gene expression in yeast. Curr Opin Chem Biol 2:216–221

    PubMed  Google Scholar 

  93. Huffman DL, O’Halloran TV (2000) Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper-transporter, Ccc2. J Biol Chem 275:18611–18614

    PubMed  Google Scholar 

  94. Cater MA, Forbes JR, La Fontaine S, Cox D, Mercer JF (2004) Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites. Biochem J 380:805–813

    PubMed  Google Scholar 

  95. Huster D, Lutsenko S (2003) The distinct roles of the N-terminal copper-binding sites in regulation of catalytic activity of the Wilson’s disease protein. J Biol Chem 278:32212–32218

    PubMed  Google Scholar 

  96. Banci L, Bertini I, Cantini F, Felli IC, Gonnelli L, Hadjiliadis N, Pierattelli R, Rosato A, Voulgaris P (2006) The Atx1-Ccc2 complex is a metal-mediated protein-protein interaction. Nat Chem Biol 2:367–368

    PubMed  Google Scholar 

  97. Banci L, Bertini I, Calderone V, Della Malva N, Felli IC, Pavelkova A, Rosato A (2009) Copper(I)-mediated protein-protein interactions result from suboptimal interaction surfaces. Biochem J 422:37–42

    PubMed  Google Scholar 

  98. Hussain F, Rodriguez-Granillo A, Wittung-Stafshede P (2009) Lysine-60 in copper chaperone atox1 plays an essential role in adduct formation with a target Wilson disease domain. J Am Chem Soc 131:16371–16373

    PubMed  Google Scholar 

  99. Yoshimizu T, Omote H, Wakabayashi T, Sambongi Y, Futai M (1998) Essential Cys-Pro-Cys motif of Caenorhabditis elegans copper transport ATPase. Biosci Biotechnol Biochem 62:1258–1260

    PubMed  Google Scholar 

  100. Mandal AK, Argüello JM (2003) Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA. Biochemistry 42:11040–11047

    PubMed  Google Scholar 

  101. Gonzalez-Guerrero M, Eren E, Rawat S, Stemmler TL, Arguello JM (2008) Structure of the two transmembrane Cu+ transport sites of the Cu+-ATPases. J Biol Chem 283:29753–29759

    PubMed  Google Scholar 

  102. Voskoboinik I, Mar J, Strausak D, Camakaris J (2001) The regulation of catalytic activity of the Menkes copper-translocating P-type ATPase: the role of high affinity copper-binding sites. J Biol Chem 276:28620–28627

    PubMed  Google Scholar 

  103. Forbes JR, Hsi G, Cox DW (1999) Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease. J Biol Chem 274:12408–12413

    PubMed  Google Scholar 

  104. Gonzalez-Guerrero M, Argüello JM (2008) Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc Natl Acad Sci USA 105:5992–5997

    PubMed  Google Scholar 

  105. Gonzalez-Guerrero M, Hong D, Arguello JM (2009) Chaperone-mediated Cu+ delivery to Cu + transport ATPases: requirement of nucleotide binding. J Biol Chem 284:20804–20811

    PubMed  Google Scholar 

  106. Mandal AK, Yang Y, Kertesz TM, Arguello JM (2004) Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases. J Biol Chem 279:54802–54807

    PubMed  Google Scholar 

  107. Sharma S, Rosato A (2009) The role of the N-terminal tail of metal-transporting P1B-type ATPases from genome-wide analysis and molecular dynamics simulations. J Chem Inf Model 49:76–83

    PubMed  Google Scholar 

  108. Wu CC, Rice WJ, Stokes DL (2008) Structure of a copper pump suggests a regulatory role for its metal-binding domain. Structure 16:976–985

    PubMed  Google Scholar 

  109. Hatori Y, Majima E, Tsuda T, Toyoshima C (2007) Domain organization and movements in heavy metal ion pumps: papain digestion of CopA, a Cu+-transporting ATPase. J Biol Chem 282:25213–25221

    PubMed  Google Scholar 

  110. Lubben M, Portmann R, Kock G, Stoll R, Young MM, Solioz M (2009) Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking. Biometals 22:363–375

    PubMed  Google Scholar 

  111. Takahashi M, Kondou Y, Toyoshima C (2007) Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors. Proc Natl Acad Sci USA 104:5800–5805

    PubMed  Google Scholar 

  112. Petris MJ, Voskoboinik I, Cater M, Smith K, Kim BE, Llanos RM, Strausak D, Camakaris J, Mercer JF (2002) Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phosphorylated catalytic intermediate. J Biol Chem 277:46736–46742

    PubMed  Google Scholar 

  113. Hamza I, Prohaska J, Gitlin JD (2003) Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci USA 100:1215–1220

    PubMed  Google Scholar 

  114. Cater MA, La Fontaine S, Mercer JF (2007) Copper binding to the N-terminal metal binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B). Biochem J 401:143–153

    PubMed  Google Scholar 

  115. Tsivkovskii R, MacArthur BC, Lutsenko S (2001) The Lys1010–Lys1325 fragment of the Wilson’s disease protein binds nucleotides and interacts with the N-terminal domain of this protein in a copper-dependent manner. J Biol Chem 276:2234–2242

    PubMed  Google Scholar 

  116. Veldhuis NA, Valova VA, Gaeth AP, Palstra N, Hannan KM, Michell BJ, Kelly LE, Jennings I, Kemp BE, Pearson RB, Robinson PJ, Camakaris J (2009) Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase. Int J Biochem Cell Biol 41:2403–2412

    PubMed  Google Scholar 

  117. Pilankatta R, Lewis D, Adams CM, Inesi G (2009) High yield heterologous expression of wild-type and mutant Cu+-ATPase (ATP7B, Wilson disease protein) for functional characterization of catalytic activity and serine residues undergoing copper-dependent phosphorylation. J Biol Chem 284:21307–21316

    PubMed  Google Scholar 

  118. Valverde RH, Morin I, Lowe J, Mintz E, Cuillel M, Vieyra A (2008) Cyclic AMP-dependent protein kinase controls energy interconversion during the catalytic cycle of the yeast copper-ATPase. FEBS Lett 582:891–895

    PubMed  Google Scholar 

  119. Lutsenko S, Gupta A, Burkhead JL, Zuzel V (2008) Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Arch Biochem Biophys 476:22–32

    PubMed  Google Scholar 

  120. Schlief ML, Craig AM, Gitlin JD (2005) NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J Neurosci 25:239–246

    PubMed  Google Scholar 

  121. McCord JM, Fridovich I (1969) Superoxide dismutase. enzymic function for erythrocuprein. J Biol Chem 244:6049–6055

    PubMed  Google Scholar 

  122. Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276:38388–38393

    PubMed  Google Scholar 

  123. Field LS, Furukawa Y, O’Halloran TV, Culotta VC (2003) Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 278:28052–28059

    PubMed  Google Scholar 

  124. Chang LY, Slot JW, Geuza HJ, Crapo JD (1988) Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes. J Cell Biol 107:2169–2179

    PubMed  Google Scholar 

  125. Bordo D, Djinovic K, Bolognesi M (1994) Conserved patterns in the Cu, Zn superoxide dismutase family. J Mol Biol 238:366–386

    PubMed  Google Scholar 

  126. Khare SD, Caplow M, Dokholyan NV (2004) The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 101:15094–15099

    PubMed  Google Scholar 

  127. Furukawa Y, Torres AS, O’Halloran TV (2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23:2872–2881

    PubMed  Google Scholar 

  128. Beyer WF Jr, Fridovich I, Mullenbach GT, Hallewell RA (1987) Examination of the role of Arginine-143 in the human copper and zinc superoxide dismutase by site-specific mutagenesis. J Biol Chem 262:11182–11187

    PubMed  Google Scholar 

  129. Bertini I, Mangani S, Viezzoli MS (1998) Structure and properties of copper/zinc superoxide dismutases. In: Sykes AG (ed) Advanced inorganic chemistry. Academic Press, San Diego, pp 127–250

    Google Scholar 

  130. Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272:23469–23472

    PubMed  Google Scholar 

  131. Furukawa Y, O’Halloran TV (2006) Posttranslational modifications in Cu, Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis. Antioxid Redox Signal 8:847–867

    PubMed  Google Scholar 

  132. Rothstein JD, Dykes-Hoberg M, Corson LB, Becker M, Cleveland DW, Price DL, Culotta VC, Wong PC (1999) The copper chaperone CCS is abundant in neurons and astrocytes in human and rodent brain. J Neurochem 72:422–429

    PubMed  Google Scholar 

  133. Brown NM, Torres AS, Doan PE, O’Halloran TV (2004) Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu, Zn superoxide dismutase. Proc Natl Acad Sci USA 101:5518–5523

    PubMed  Google Scholar 

  134. Schmidt PJ, Rae TD, Pufahl RA, Hamma T, Strain J, O’Halloran TV, Culotta VC (1999) Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J Biol Chem 274:23719–23725

    PubMed  Google Scholar 

  135. Stasser JP, Eisses JF, Barry AN, Kaplan JH, Blackburn NJ (2005) Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface. Biochemistry 44:3143–3152

    PubMed  Google Scholar 

  136. Rae TD, Torres AS, Pufahl RA, O’Halloran TV (2001) Mechanism of Cu, Zn-superoxide dismutase activation by the human metallochaperone hCCS. J Biol Chem 276:5166–5176

    PubMed  Google Scholar 

  137. Endo T, Fujii T, Sato K, Taniguchi N, Fujii J (2000) A pivotal role of Zn-binding residues in the function of the copper chaperone for SOD1. Biochem Biophys Res Commun 276:999–1004

    PubMed  Google Scholar 

  138. Stasser JP, Siluvai GS, Barry AN, Blackburn NJ (2007) A multinuclear copper(I) cluster forms the dimerization interface in copper-loaded human copper chaperone for superoxide dismutase. Biochemistry 46:11845–11856

    PubMed  Google Scholar 

  139. Barry AN, Clark KM, Otoikhian A, van der Donk WA, Blackburn NJ (2008) Selenocysteine positional variants reveal contributions to copper binding from cysteine residues in domains 2 and 3 of human copper chaperone for superoxide dismutase. Biochemistry 47:13074–13083

    PubMed  Google Scholar 

  140. Schmidt PJ, Kunst C, Culotta VC (2000) Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein–protein interactions with the copper chaperone for SOD1. J Biol Chem 275:33771–33776

    PubMed  Google Scholar 

  141. Hall LT, Sanchez RJ, Holloway SP, Zhu H, Stine JE, Lyons TJ, Demeler B, Schirf V, Hansen JC, Nersissian AM, Valentine JS, Hart PJ (2000) X-ray crystallographic and analytical ultracentrifugation analyses of truncated and full-length yeast copper chaperones for SOD (LYS7): a dimer-dimer model of LYS7-SOD association and copper delivery. Biochemistry 39:3611–3623

    PubMed  Google Scholar 

  142. Lamb AL, Torres AS, O’Halloran TV, Rosenzweig AC (2001) Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat Struct Biol 8:751–755

    PubMed  Google Scholar 

  143. Arnesano F, Banci L, Bertini I, Martinelli M, Furukawa Y, O’Halloran TV (2004) The unusually stable quaternary structure of human SOD1 is controlled by both metal occupancy and disulfide status. J Biol Chem 279:47998–48003

    PubMed  Google Scholar 

  144. Lamb AL, Torres AS, O’Halloran TV, Rosenzweig AC (2000) Heterodimer formation between superoxide dismutase and its copper chaperone. Biochemistry 39:14720–14727

    PubMed  Google Scholar 

  145. Shibata N, Hirano A, Kobayashi M, Sasaki S, Kato T, Matsumoto S, Shiozawa Z, Komori T, Ikemoto A, Umahara T (1994) Cu/Zn superoxide dismutase-like immunoreactivity in Lewy body-like inclusions of sporadic amyotrophic lateral sclerosis. Neurosci Lett 179:149–152

    PubMed  Google Scholar 

  146. Furukawa Y, O’Halloran TV (2005) Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. J Biol Chem 280:17266–17274

    PubMed  Google Scholar 

  147. Rakhit R, Cunningham P, Furtos-Matei A, Dahan S, Qi XF, Crow JP, Cashman NR, Kondejewski LH, Chakrabartty A (2002) Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem 277:47551–47556

    PubMed  Google Scholar 

  148. Banci L, Bertini I, Girotto S, Martinelli M, Vieru M, Whitelegge J, Durazo A, Valentine JS (2007) Metal-free SOD1 forms amyloid-like oligomers: a possible general mechanism for familial ALS. Proc Natl Acad Sci USA 104:11263–11267

    PubMed  Google Scholar 

  149. Karch CM, Borchelt DR (2008) A limited role for disulfide cross-linking in the aggregation of mutant SOD1 linked to familial amyotrophic lateral sclerosis. J Biol Chem 283:13528–13537

    PubMed  Google Scholar 

  150. Tiwari A, Hayward LJ (2003) Familial amyotrophic lateral sclerosis mutants of copper/zinc superoxide dismutase are susceptible to disulfide reduction. J Biol Chem 278:5984–5992

    PubMed  Google Scholar 

  151. Culotta VC, Joh HD, Lin SJ, Slekar KH, Strain J (1995) A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem 270:29991–29997

    PubMed  Google Scholar 

  152. Wei J, Srinivasan C, Han H, Valentine J, Gralla EB (2001) Evidence for a novel role of copper-zinc superoxide dismutase in zinc metabolism. J Biol Chem 276:44798–44803

    PubMed  Google Scholar 

  153. Lyons TJ, Liu H, Goto JJ, Nerissian A, Roe JA, Graden JA, Café C, Ellerby LM, Bredesen DE, Gralla EB (1996) Mutations in copper-zinc superoxide dismutase that cause amyotrophic lateral sclerosis alter the zinc binding site and the redox behaviour of the protein. Proc Natl Acad Sci USA 93:12240–12244

    PubMed  Google Scholar 

  154. Banci L, Bertini I, Boca M, Girotto S, Martinelli M, Valentine JS, Vieru M (2008) SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization. Plos ONE 3:e1677

    PubMed  Google Scholar 

  155. Cozzolino M, Pesaresi MG, Amori I, Crosio C, Ferri A, Nencini M, Carri MT (2009) Oligomerization of mutant SOD1 in mitochondria of motoneuronal cells drives mitochondrial damage and cell toxicity. Antioxid Redox Signal 11:1547–1558

    PubMed  Google Scholar 

  156. Banci L, Bertini I, Boca M, Calderone V, Cantini F, Girotto S, Vieru M (2009) Structural and dynamic aspects related to oligomineralization of apo SOD1 and its mutants. Proc Natl Acad Sci USA 106:6980–6985

    PubMed  Google Scholar 

  157. Carroll MC, Girouard JB, Ulloa JL, Subramaniam JR, Wong PC, Valentine JS, Culotta VC (2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci USA 101:5964–5969

    PubMed  Google Scholar 

  158. Jensen LT, Culotta VC (2005) Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS. J Biol Chem 280:41373–41379

    PubMed  Google Scholar 

  159. Leitch JM, Yick PJ, Culotta VC (2009) The right to choose: multiple pathways for activating copper, zinc superoxide dismutase. J Biol Chem 284:24679–24683

    PubMed  Google Scholar 

  160. Leitch JM, Jensen LT, Bouldin SD, Outten CE, Hart PJ, Culotta VC (2009) Activation of Cu, Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS. J Biol Chem 284:21863–21871

    PubMed  Google Scholar 

  161. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144

    PubMed  Google Scholar 

  162. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269:1069–1074

    PubMed  Google Scholar 

  163. Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    PubMed  Google Scholar 

  164. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230

    PubMed  Google Scholar 

  165. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. J Biol Chem 276:38084–38089

    PubMed  Google Scholar 

  166. Weisiger RA, Fridovich I (1973) Mitochondrial superoxide dimutase. Site of synthesis and intramitochondrial localization. J Biol Chem 248:4793–4796

    PubMed  Google Scholar 

  167. Barrientos A, Gouget K, Horn D, Soto IC, Fontanesi F (2009) Suppression mechanisms of COX assembly defects in yeast and human: insights into the COX assembly process. Biochim Biophys Acta 1793:97–107

    PubMed  Google Scholar 

  168. Elam JS, Taylor AB, Strange R, Antonyuk S, Doucette PA, Rodriguez JA, Hasnain SS, Hayward LJ, Valentine JS, Yeates TO, Hart PJ (2003) Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat Struct Biol 10:461–467

    PubMed  Google Scholar 

  169. Glerum DM, Shtanko A, Tzagoloff A (1996) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271:14504–14509

    PubMed  Google Scholar 

  170. Nobrega MP, Bandeira SCB, Beers J, Tzagoloff A (2002) Characterization of COX19, a widely distributed gene required for expression of mitochondrial cytochrome c oxidase. J Biol Chem 277:40206–40211

    PubMed  Google Scholar 

  171. Barros MH, Johnson A, Tzagoloff A (2004) COX23, a homologue of COX17, is required for cytochrome oxidase assembly. J Biol Chem 279:31943–31947

    PubMed  Google Scholar 

  172. Rigby K, Zhang L, Cobine PA, George GN, Winge DR (2007) Characterization of the cytochrome c oxidase assembly factor Cox19 of Saccharomyces cerevisiae. J Biol Chem 282:10233–10242

    PubMed  Google Scholar 

  173. Maxfield AB, Heaton DN, Winge DR (2004) Cox17 is functional when tethered to the mitochondrial inner membrane. J Biol Chem 279:5072–5080

    PubMed  Google Scholar 

  174. Cobine PA, Ojeda LD, Rigby KM, Winge DR (2004) Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J Biol Chem 279:14447–14455

    PubMed  Google Scholar 

  175. Cobine PA, Pierrel F, Bestwick ML, Winge DR (2006) Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase. J Biol Chem 281:36552–36559

    PubMed  Google Scholar 

  176. Leary SC, Winge DR, Cobine PA (2009) “Pulling the plug” on cellular copper: the role of mitochondria in copper export. Biochim Biophys Acta 1793:146–153

    PubMed  Google Scholar 

  177. Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR (2004) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 279:35334–35340

    PubMed  Google Scholar 

  178. Heaton DN, George GN, Garrison G, Winge DR (2001) The mitochondrial copper metallochaperone Cox17 exists as an oligomeric, polycopper complex. Biochemistry 40:743–751

    PubMed  Google Scholar 

  179. Banci L, Bertini I, Ciofi-Baffoni S, Janicka A, Martinelli M, Kozlowski H, Palumaa P (2008) A structural-dynamical characterization of human Cox17. J Biol Chem 283:7912–7920

    PubMed  Google Scholar 

  180. Arnesano F, Balatri E, Banci L, Bertini I, Winge DR (2005) Folding studies of Cox17 reveal an important interplay of cysteine oxidation and copper binding. Structure 13:713–722

    PubMed  Google Scholar 

  181. Banci L, Bertini I, Ciofi-Baffoni S, Leontari I, Martinelli M, Palumaa P, Sillard R, Wang S (2007) Human Sco1 functional studies and pathological implications of the P174L mutant. Proc Natl Acad Sci USA 104:15–20

    PubMed  Google Scholar 

  182. Voronova A, Meyer-Klaucke W, Meyer T, Rompel A, Krebs B, Kazantseva J, Sillard R, Palumaa P (2007) Oxidative switches in functioning of mammalian copper chaperone Cox17. Biochem J 408:139–148

    PubMed  Google Scholar 

  183. Arnesano F, Banci L, Bertini I, Cantini F, Ciofi-Baffoni S, Huffman DL, O’Halloran TV (2001) Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J Biol Chem 276:41365–41376

    PubMed  Google Scholar 

  184. Banci L, Bertini I, Calderone V, Ciofi-Baffoni S, Mangani S, Martinelli M, Palumaa P, Wang S (2006) A hint for the function of human Sco1 from different structures. Proc Natl Acad Sci USA 103:8595–8600

    PubMed  Google Scholar 

  185. Rigby K, Cobine PA, Khalimonchuk O, Winge DR (2008) Mapping the functional interaction of Sco1 and Cox2 in cytochrome oxidase biogenesis. J Biol Chem 283:15015–15022

    PubMed  Google Scholar 

  186. Glerum DM, Shtanko A, Tzagoloff A (1996) SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae. J Biol Chem 271:20531–20535

    PubMed  Google Scholar 

  187. Beers J, Glerum DM, Tzagoloff A (2002) Purification and characterization of yeast Sco1p, a mitochondrial copper protein. J Biol Chem 277:22185–22190

    PubMed  Google Scholar 

  188. Schulze M, Rodel G (1988) SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II. Mol Gen Genet 211:492–498

    PubMed  Google Scholar 

  189. Leary SC, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M, Shoubridge EA (2004) Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum Mol Genet 13:1839–1848

    PubMed  Google Scholar 

  190. Shoubridge EA (2001) Cytochrome c oxidase deficiency. Am J Med Genet 106:46–52

    PubMed  Google Scholar 

  191. Banci L, Bertini I, Ciofi-Baffoni S, Gerothanassis IP, Leontari I, Martinelli M, Wang S (2007) A structural characterization of human sco2. Structure 15:1132–1140

    PubMed  Google Scholar 

  192. Leary SC, Cobine PA, Kaufman BA, Guercin GH, Mattman A, Palaty J, Lockitch G, Winge DR, Rustin P, Horvath R, Shoubridge EA (2007) The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis. Cell Metab 5:9–20

    PubMed  Google Scholar 

  193. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653

    PubMed  Google Scholar 

  194. Nittis T, George GN, Winge DR (2001) Yeast Sco1, a protein essential for cytochrome c oxidase function is a Cu(I)-binding protein. J Biol Chem 276:42520–42526

    PubMed  Google Scholar 

  195. Horng YC, Leary SC, Cobine PA, Young FB, George GN, Shoubridge EA, Winge DR (2005) Human Sco1 and Sco2 function as copper-binding proteins. J Biol Chem 280:34113–34122

    PubMed  Google Scholar 

  196. Lode A, Kuschel M, Paret C, Rodel G (2000) Mitochondrial copper metabolism in yeast: interaction between Sco1p and Cox2p. FEBS Lett 485:19–24

    PubMed  Google Scholar 

  197. Mattatall NR, Jazairi J, Hill BC (2000) Characterization of YpmQ, an accessory protein required for the expression of cytochrome c oxidase in Bacillus subtilis. J Biol Chem 275:28802–28809

    PubMed  Google Scholar 

  198. Banci L, Bertini I, Ciofi-Baffoni S, Boelens R, Bonvin AM, van Dijk ADJ (2007) Modeling protein-protein complexes involved in the cytochrome c oxidase copper-delivery pathway. J Proteome Res 6:1530–1539

    PubMed  Google Scholar 

  199. Balatri E, Banci L, Bertini I, Cantini F, Ciofi-Baffoni S (2003) Solution structure of Sco1: a thioredoxin-like protein involved in cytochrome c oxidase assembly. Structure 11:1431–1443

    PubMed  Google Scholar 

  200. Abriata LA, Banci L, Bertini I, Ciofi-Baffoni S, Gkazonis P, Spyroulias GA, Vila AJ, Wang S (2008) Mechanism of Cu(A) assembly. Nat Chem Biol 4:599–601

    PubMed  Google Scholar 

  201. Leary SC, Sasarman F, Nishimura T, Shoubridge EA (2009) Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1. Hum Mol Genet 18:2230–2240

    PubMed  Google Scholar 

  202. Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, Cormier-Daire V, Munnich A, Bonnefont JP, Rustin P, Rotig A (2000) Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 67:1104–1109

    PubMed  Google Scholar 

  203. Leary SC, Mattman A, Wai T, Koehn DC, Clarke LA, Chan S, Lomax B, Eydoux P, Vallance HD, Shoubridge EA (2006) A hemizygous SCO2 mutation in an early onset rapidly progressive, fatal cardiomyopathy. Mol Genet Metab 89:129–133

    PubMed  Google Scholar 

  204. Tzagoloff A, Capitanio N, Nobrega MP, Gatti D (1990) Cytochrome oxidase assembly in yeast requires the product of COX11, a homolog of the P. denitrificans protein encoded by ORF3. EMBO J 9:2759–2764

    PubMed  Google Scholar 

  205. Hiser L, Di Valentin M, Hamer AG, Hosler JP (2000) Cox11p is required for stable formation of the Cu(B) and magnesium centers of cytochrome c oxidase. J Biol Chem 275:619–623

    PubMed  Google Scholar 

  206. Carr HS, George GN, Winge DR (2002) Yeast Cox11, a protein essential for cytochrome c oxidase assembly, is a Cu(I)-binding protein. J Biol Chem 277:31242–31273

    Google Scholar 

  207. Banci L, Bertini I, Cantini F, Ciofi-Baffoni S, Gonnelli L, Mangani S (2004) Solution structure of Cox11: a novel type of β-immunoglobulin-like fold involved in CuB site formation of cytochrome c oxidase. J Biol Chem 279:34833–34839

    PubMed  Google Scholar 

  208. Carr HS, Maxfield AB, Horng YC, Winge DR (2005) Functional analysis of the domains in Cox11. J Biol Chem 280:22664–22669

    PubMed  Google Scholar 

  209. Khalimonchuk O, Ostermann K, Rodel G (2005) Evidence for the association of yeast mitochondrial ribosomes with Cox11p, a protein required for the Cu(B) site formation of cytochrome c oxidase. Curr Genet 47:223–233

    PubMed  Google Scholar 

  210. Greiner P, Hannappel A, Werner C, Ludwig B (2008) Biogenesis of cytochrome c oxidase—in vitro approaches to study cofactor insertion into a bacterial subunit I. Biochim Biophys Acta 1777:904–911

    PubMed  Google Scholar 

  211. Herrmann JM, Köhl R (2007) Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria. J Cell Biol 176:559–563

    PubMed  Google Scholar 

  212. Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, Herrmann JM (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121:1059–1069

    PubMed  Google Scholar 

  213. Chacinska A, Pfannschmidt S, Wiedemann N, Kozjak V, Sanjuan Szklarz LK, Schulze-Specking A, Truscott KM, Guiard B, Meisinger C, Pfanner N (2004) Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J 23:3735–3746

    PubMed  Google Scholar 

  214. Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gallo A, Martinelli M, Sideris DP, Katrakili N, Tokatlidis K (2009) MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. Nat Struct Mol Biol 16:198–206

    PubMed  Google Scholar 

  215. Stojanovski D, Milenkovic D, Muller JM, Gabriel K, Schulze-Specking A, Baker MJ, Ryan MT, Guiard B, Pfanner N, Chacinska A (2008) Mitochondrial protein import: precursor oxidation in a ternary complex with disulfide carrier and sulfhydryl oxidase. J Cell Biol 183:195–202

    PubMed  Google Scholar 

  216. Banci L, Bertini I, Ciofi-Baffoni S, Hadjiloi T, Martinelli M, Palumaa P (2008) Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer. Proc Natl Acad Sci USA 105:6803–6808

    PubMed  Google Scholar 

  217. McEwan AG, Lewin A, Davy SL, Boetzel R, Leech A, Walker D, Wood T, Moore GR (2002) PrrC from Rhodobacter sphaeroides, a homologue of eukaryotic Sco proteins, is a copper-binding protein and may have a thiol-disulfide oxidoreductase activity. FEBS Lett 518:10–16

    PubMed  Google Scholar 

  218. Banci L, Bertini I, Cavallaro G, Rosato A (2007) The functions of Sco proteins from genome-based analysis. J Proteome Res 6:1568–1579

    PubMed  Google Scholar 

  219. Ye Q, Imriskova-Sosova I, Hill BC, Jia Z (2005) Identification of a disulfide switch in BsSco, a member of the Sco family of cytochrome c oxidase assembly proteins. Biochemistry 44:2934–2942

    PubMed  Google Scholar 

  220. Andruzzi L, Nakano M, Nilges MJ, Blackburn NJ (2005) Spectroscopic studies of metal binding and metal selectivity in Bacillus subtilis BSco, a homologue of the yeast mitochondrial protein Sco1p. J Am Chem Soc 127:16548–16558

    PubMed  Google Scholar 

  221. Banci L, Bertini I, Ciofi-Baffoni S, Katsari E, Katsaros N, Kubicek K, Mangani S (2005) A copper(I) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase. Proc Natl Acad Sci USA 102:3994–3999

    PubMed  Google Scholar 

  222. Kawamata H, Manfredi G (2008) Different regulation of wild-type and mutant Cu, Zn superoxide dismutase localization in mammalian mitochondria. Hum Mol Genet 17:3303–3317

    PubMed  Google Scholar 

  223. Reddehase S, Grumbt B, Neupert W, Hell K (2009) The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1. J Mol Biol 385:331–338

    PubMed  Google Scholar 

  224. Petrakis N, Alcock F, Tokatlidis K (2009) Mitochondrial ATP-independent chaperones. IUBMB. Life 61:909–914

    PubMed  Google Scholar 

  225. Allen S, Balabanidou V, Sideris DP, Lisowsky T, Tokatlidis K (2005) Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J Mol Biol 353:937–944

    PubMed  Google Scholar 

  226. Magrane J, Hervias I, Henning MS, Damiano M, Kawamata H, Manfredi G (2009) Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. Hum Mol Genet 18:4552–4564

    PubMed  Google Scholar 

  227. Son M, Puttaparthi K, Kawamata H, Rajendran B, Boyer PJ, Manfredi G, Elliott JL (2007) Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology. Proc Natl Acad Sci USA 104:6072–6077

    PubMed  Google Scholar 

  228. Son M, Leary SC, Romain N, Pierrel F, Winge DR, Haller RG, Elliott JL (2008) Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein. J Biol Chem 283:12267–12275

    PubMed  Google Scholar 

  229. Son M, Fu Q, Puttaparthi K, Matthews CM, Elliott JL (2009) Redox susceptibility of SOD1 mutants is associated with the differential response to CCS over-expression in vivo. Neurobiol Dis 34:155–162

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivano Bertini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banci, L., Bertini, I., Cantini, F. et al. Cellular copper distribution: a mechanistic systems biology approach. Cell. Mol. Life Sci. 67, 2563–2589 (2010). https://doi.org/10.1007/s00018-010-0330-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0330-x

Keywords

Navigation