Skip to main content

Idempotent/Tropical Analysis, the Hamilton–Jacobi and Bellman Equations

  • Chapter
  • First Online:
Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2074))

Abstract

Tropical and idempotent analysis with their relations to the Hamilton–Jacobi and matrix Bellman equations are discussed. Some dequantization procedures are important in tropical and idempotent mathematics. In particular, the Hamilton–Jacobi–Bellman equation is treated as a result of the Maslov dequantization applied to the Schrödinger equation. This leads to a linearity of the Hamilton–Jacobi–Bellman equation over tropical algebras. The correspondence principle and the superposition principle of idempotent mathematics are formulated and examined. The matrix Bellman equation and its applications to optimization problems on graphs are discussed. Universal algorithms for numerical algorithms in idempotent mathematics are investigated. In particular, an idempotent version of interval analysis is briefly discussed.

In dear memory of my beloved wife Irina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms (Addison Wesley, Reading, 1976)

    Google Scholar 

  2. A.V. Aho, J.D. Ullman, in The Theory of Parsing, Translation and Compiling. Compiling, vol. 2 (Prentice Hall, Englewood Cliffs, 1973)

    Google Scholar 

  3. M. Akian, S. Gaubert, V. Kolokoltsov, in Set Coverings and Invertibility of the Functional Galois Connections, ed. by G. Litvinov, V. Maslov. Idempotent Mathematics and Mathematical Physics, vol. 377 (American Mathematical Society, Providence, 2005), pp. 19–51 [arXiv:math.FA/0403441]

    Google Scholar 

  4. G. Alefeld, J. Herzberger, Introduction to Interval Computations (Academic, New York, 1983)

    MATH  Google Scholar 

  5. S.M. Avdoshin, V.V. Belov, V.P. Maslov, A.M. Chebotarev, in Design of Computational Media: Mathematical Aspects, ed. by V.P. Maslov, K.A. Volosov. Mathematical Aspects of Computer Engineering (Mir Publishers, Moscow, 1988), pp. 9–145

    Google Scholar 

  6. F.L. Baccelli, G. Cohen, G.J. Olsder, J.P. Quadrat, Synchronization and Linearity: An Algebra for Discrete Event Systems (Wiley, New York, 1992)

    MATH  Google Scholar 

  7. R.C. Backhouse, B.A. Carré, Regular algebra applied to path-finding problems. J. Inst. Math. Appl. 15, 161–186 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. R.C. Backhouse, P. Janssen, J. Jeuring, L. Meertens, in Generic Programming – An Introduction. Lecture Notes in Computer Science, vol. 1608 (1999), pp. 28–115

    Google Scholar 

  9. W. Barth, E. Nuding, Optimale Lösung von intervalgleichungsystemen. Computing 12, 117–125 (1974)

    MathSciNet  MATH  Google Scholar 

  10. G. Birkhoff, Lattice Theory (American Mathematical Society, Providence, 1967)

    MATH  Google Scholar 

  11. D. Blithe, Rise of the graphics processors. Proc. IEEE 96(5), 761–778 (2008)

    Article  Google Scholar 

  12. P. Butkovič, Max-Linear Systems: Theory and Algorithms (Springer, London, 2010)

    Book  MATH  Google Scholar 

  13. P. Butkovič, K. Zimmermann, A strongly polynomial algorithm for solving two-sided linear systems in max-algebra. Discrete Appl. Math. 154, 437–446 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. B.A. Carré, An algebra for network routing problems. J. Inst. Math. Appl. 7, 273–294 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. B.A. Carré, Graphs and Networks (The Clarendon Press/Oxford University Press, Oxford, 1979)

    MATH  Google Scholar 

  16. K. Cechlárová, R.A. Cuninghame-Green, Interval systems of max-separable linear equations. Linear Algebra Appl. 340(1–3), 215–224 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Cohen, S. Gaubert, J.P. Quadrat, Max-plus algebra and system theory: where we are and where to go now. Annu. Rev. Control 23, 207–219 (1999)

    Google Scholar 

  18. G. Cohen, S. Gaubert, J.P. Quadrat, Duality and separation theorems in idempotent semimodules. Linear Algebra Appl. 379, 395–422 (2004), http://www.arXiv.org/abs/math.FA/0212294

  19. G.E. Coxson, Computing exact bounds on the elements of an inverse interval matrix is NP-hard. Reliable Comput. 5, 137–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. R.A. Cuninghame-Green, in Minimax Algebra. Lecture Notes in Economics and Mathematical Systems, vol. 166 (Springer, Berlin, 1979)

    Google Scholar 

  21. R.A. Cuninghame-Green, Minimax algebra and its applications. Fuzzy Sets Syst. 41, 251–267 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. R.A. Cuninghame-Green, Minimax algebra and applications. Adv. Imaging Electron Phys. 90, 1–121 (1995)

    Article  Google Scholar 

  23. R.A. Cuninghame-Green, P. Butkovič, The equation A ⊗ x = B ⊗ y over (max, + ). Theor. Comput. Sci. 293, 3–12 (2003)

    Article  MATH  Google Scholar 

  24. M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann, Linear Optimization Problems with Inexact Data (Springer, New York, 2006)

    MATH  Google Scholar 

  25. I.M. Gelfand, M. Kapranov, A. Zelevinsky, Multidimensional Determinants, Discriminants and Resultants (Birkhäuser, Boston, 1994)

    Book  Google Scholar 

  26. J. Golan, Semirings and Their Applications (Kluwer, Dordrecht, 2000)

    Google Scholar 

  27. M. Gondran, in Path Algebra and Algorithms, ed. by B. Roy. Combinatorial Programming: Methods and Applications (Reidel, Dordrecht, 1975), pp. 137–148

    Google Scholar 

  28. M. Gondran, M. Minoux, Graphes et Algorithmes (Editions Eylrolles, Paris, 1979)

    MATH  Google Scholar 

  29. M. Gondran, M. Minoux, Graphs, Dioids and Semirings. New Models and Algorithms (Springer, Berlin, 2010)

    Google Scholar 

  30. J. Gunawardena (ed.), Idempotency. Publications of the I. Newton Institute, vol. 11 (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  31. L. Hardouin, B. Cottenceau, M. Lhommeau, E. Le Corronc, Interval systems over idempotent semiring. Linear Algebra Appl. 431, 855–862 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Itenberg, G. Mikhalkin, E. Shustin, in Tropical Algebraic Geometry. Oberwolfach Seminars, vol. 35 (Birkhäuser, Basel, 2007)

    Google Scholar 

  33. V.N. Kolokoltsov, V.P. Maslov, Idempotent Analysis and Its Applications (Kluwer, Dordrecht, 1997)

    Book  MATH  Google Scholar 

  34. V.N. Kolokoltsov, Idempotency structures in optimization. J. Math. Sci. 104(1), 847–880 (2001)

    Article  Google Scholar 

  35. V. Kreinovich, A. Lakeev, J. Rohn, P. Kahl, Computational Complexity and Feasibility of Data Processing and Interval Computations (Kluwer, Dordrecht, 1998)

    Book  MATH  Google Scholar 

  36. V. Kreinovich, A.V. Lakeyev, S.I. Noskov, Optimal solution of interval systems is intractable (NP-hard). Interval Comput. 1, 6–14 (1993)

    MathSciNet  Google Scholar 

  37. H.T. Kung, Two-level pipelined systolic arrays for matrix multiplication, polynomial evaluation and discrete Fourier transformation, in Dynamic and Cellular Automata, ed. by J. Demongeof et al. (Academic, New York, 1985), pp. 321–330

    Google Scholar 

  38. D.J. Lehmann, Algebraic structures for transitive closure. Theor. Comput. Sci. 4, 59–76 (1977)

    Article  MATH  Google Scholar 

  39. G.L. Litvinov, The Maslov dequantization, idempotent and tropical mathematics: a brief introduction. J. Math. Sci. 140(3), 426–441 (2007), http://www.arXiv.org/abs/math.GM/0507014

  40. G.L. Litvinov, V.P. Maslov, The correspondence principle for idempotent calculus and some computer applications, in Idempotency, ed. by J. Gunawardena (Cambridge University Press, Cambridge, 1998), pp. 420–443, http://www.arXiv.org/abs/math/0101021

  41. G.L. Litvinov, V.P. Maslov, Idempotent mathematics: correspondence principle and applications. Russ. Math. Surv. 51(6), 1210–1211 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. G.L. Litvinov, V.P. Maslov, Correspondence Principle for Idempotent Calculus and Some Computer Applications. (IHES/M/95/33) (Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, 1995), http://www.arXiv.org/abs/math.GM/0101021

  43. G.L. Litvinov, V.P. Maslov (eds.), in Idempotent Mathematics and Mathematical Physics. Contemporary Mathematics, vol. 307 (American Mathematical Society, Providence, 2005)

    Google Scholar 

  44. G.L. Litvinov, V.P. Maslov, A.Ya. Rodionov, A Unifying Approach to Software and Hardware Design for Scientific Calculations and Idempotent Mathematics (International Sophus Lie Centre, Moscow, 2000), http://www.arXiv.org/abs/math.SC/0101069

  45. G.L. Litvinov, V.P. Maslov, A.Ya. Rodionov, A.N. Sobolevski, in Universal Algorithms, Mathematics of Semirings and Parallel Computations. Lect. Notes Comput. Sci. Eng. 75, 63–89 (2011), http://www.arXiv.org/abs/1005.1252

  46. G. Litvinov, V. Maslov, S. Sergeev (eds.), Idempotent and Tropical Mathematics and Problems of Mathematical Physics, vols. I and II, Moscow, 2007. French-Russian Laboratory J.V. Poncelet, http://www.arXiv.org/abs/0710.0377, http://www.arXiv.org/abs/0709.4119

  47. G.L. Litvinov, V.P. Maslov, G.B. Shpiz, Linear functionals on idempotent spaces: an algebraic approach. Dokl. Math. 58(3), 389–391 (1998), http://www.arXiv.org/abs/math.FA/0012268

    Google Scholar 

  48. G.L. Litvinov, V.P. Maslov, G.B. Shpiz, Tensor products of idempotent semimodules. An algebraic approach. Math. Notes 65(4), 497–489 (1999), http://www.arXiv.org/abs/math.FA/0101153

  49. G.L. Litvinov, V.P. Maslov, G.B. Shpiz, Idempotent functional analysis: An algebraic approach. Math. Notes 69(5), 758–797 (2001)

    MathSciNet  Google Scholar 

  50. G.L. Litvinov, V.P. Maslov, G.B. Shpiz, Idempotent (asymptotic) analysis and the representation theory, in Asymptotic Combinatorics with Applications to Mathematical Physics, ed. by V.A. Malyshev, A.M. Vershik (Kluwer, Dordrecht, 2002), pp. 267–268

    Chapter  Google Scholar 

  51. G.L. Litvinov, E.V. Maslova, Universal numerical algorithms and their software implementation. Program. Comput. Softw. 26(5), 275–280 (2000), http://www.arXiv.org/abs/math.SC/0102114

  52. G.L. Litvinov, A.Ya. Rodionov, A.V. Tchourkin, Approximate rational arithmetics and arbitrary precision computations for universal algorithms. Int. J. Pure Appl. Math. 45(2), 193–204 (2008), http://www.arXiv.org/abs/math.NA/0101152

    Google Scholar 

  53. G.L. Litvinov, S.N. Sergeev (eds.), in Tropical and Idempotent Mathenatics. Contemporary Mathematics, vol. 495 (American Mathematical Society, Providence, 2009)

    Google Scholar 

  54. G.L. Litvinov, G.B. Shpiz, Nuclear semimodules and kernel theorems in idempotent analysis: an algebraic approach. Dokl. Math. 66(2), 197–199 (2002), http://www.arXiv.org/abs/math.FA/0202386

    Google Scholar 

  55. G.L. Litvinov, G.B. Shpiz, The dequantization transform and generalized Newton polytopes, in Idempotent Mathematics and Mathematical Physics, vol. 377, ed. by G. Litvinov, V. Maslov. Contemporary Mathematics (American Mathematical Society, Providence, 2005), pp. 181–186

    Google Scholar 

  56. G.L. Litvinov, G.B. Shpiz, The dequantization procedures related to maslov dequantization, in Idempotent and Tropical Mathematics and Problems of Mathematical Physics, vol. I, ed. by G. Litvinov, V. Maslov, S. Sergeev (2007), pp. 99–104, http://www.arXiv.org/abs/0710.0377

  57. G.L. Litvinov, G.B. Shpiz, Kernel theorems and nuclearity in idempotent mathematics. An algebraic approach. J. Math. Sci. 141(4), 1417–1428 (2007), http://www.arXiv.org/abs/math.FA/0609033

    Google Scholar 

  58. G.L. Litvinov, A.N. Sobolevskiĭ, Exact interval solutions of the discrete bellman equation and polynomial complexity in interval idempotent linear algebra. Dokl. Math. 62(2), 199–201 (2000), http://www.arXiv.org/abs/math.LA/0101041

  59. G.L. Litvinov, A.N. Sobolevskiĭ, Idempotent interval analysis and optimization problems. Reliable Comput. 7(5), 353–377 (2001), http://www.arXiv.org/abs/math.SC/0101080

    Google Scholar 

  60. M. Lorenz, Object Oriented Software: A Practical Guide (Prentice Hall Books, Englewood Cliffs, 1993)

    Google Scholar 

  61. G.G. Magaril-Il’yaev, V.M. Tikhomirov, in Convex Analysis: Theory and Applications. Translations of Mathematical Monographs, vol. 222 (AMS, Providence, 2003)

    Google Scholar 

  62. V.P. Maslov, Méthods Opératorielles (Éditions MIR, Moscow, 1987)

    Google Scholar 

  63. V.P. Maslov, New superposition principle for optimization calculus, in Seminaire sur les Equations aux Dérivées Partielles, 1985/1986, Centre Math. de l’École Polytechnique, Palaiseau (1986) exposé 24

    Google Scholar 

  64. V.P. Maslov, A new approach to generalized solutions of nonlinear systems. Sov. Math. Dokl. 42(1), 29–33 (1987)

    Google Scholar 

  65. V.P. Maslov, On a new superposition principle for optimization problems. Uspekhi Math. Nauk [Russ. Math. Surv.] 42(3), 39–48 (1987)

    Google Scholar 

  66. V.P. Maslov et al., Mathematics of Semirings and Its Applications. Technical report (in Russian). Institute for New Technologies, Moscow (1991)

    Google Scholar 

  67. V.P. Maslov, A general notion of topological spaces of negative dimension and quantization of their densities. Math. Notes 81(1), 157–160 (2007)

    MathSciNet  Google Scholar 

  68. V.P. Maslov, S.N. Samborskiĭ (eds.), in Idempotent Analysis. Advances in Soviet Mathematics, vol. 13 (American Mathematical Society, Providence, 1992)

    Google Scholar 

  69. V.P. Maslov, K.A. Volosov (eds.), Mathematical Aspects of Computer Media (Mir publishers, Moscow, 1988)

    Google Scholar 

  70. Yu.V. Matijasevich, A posteriori version of interval analysis, in Topics in the Theoretical Basis and Applications of Computer Sciences. Proceedings of the 4th Hung. Comp. Sci. Conf., (Akad. Kiado, Budapest, 1986), pp. 339–349

    Google Scholar 

  71. W.M. McEneaney, Max-Plus Methods for Nonlinear Control and Estimation (Birkhäuser, Boston, 2010)

    Google Scholar 

  72. G. Mikhalkin, Enumerative tropical algebraic geometry in R 2. J. ACM 18, 313–377 (2005), http://www.arXiv.org/abs/math.AG/0312530

    Google Scholar 

  73. G. Mikhalkin, Tropical geometry and its applications, in Proceedings of the ICM, vol. 2 (Madrid, Spain, 2006), pp. 827–852, http://www.arXiv.org/abs/math.AG/0601041

  74. R.E. Moore, in Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics (SIAM, Philadelphia, 1979)

    Google Scholar 

  75. H. Myškova, Interval systems of max-separable linear equations. Linear Algebra Appl. 403, 263–272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  76. H. Myškova, Control solvability of interval systems of max-separable linear equations. Linear Algebra Appl. 416, 215–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  77. A. Neumaier, Interval Methods for Systems of Equations (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  78. J.D. Owens, GPU computing. Proc. IEEE 96(5), 879–899 (2008)

    MathSciNet  Google Scholar 

  79. S.N.N. Pandit, A new matrix calculus. SIAM J. Appl. Math. 9, 632–639 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  80. I. Pohl, Object-Oriented Programming Using \(C + +\), 2nd edn. (Addison-Wesley, Reading, 1997)

    Google Scholar 

  81. J.P. Quadrat, Théorèms asymptotiques en programmation dynamique. C. R. Acad. Sci. Paris 311, 745–748 (1990)

    MathSciNet  MATH  Google Scholar 

  82. J.P. Quadrat, Max plus working group, Max-plus algebra software (2007), http://maxplus.org; http://scilab.org/contrib; http://amadeus.inria.fr

  83. Y. Robert, D. Tristram. An orthogonal systolic array for the algebraic path problem. Computing 39, 187–199 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  84. G. Rote, A systolic array algorithm for the algebraic path problem. Computing 34, 191–219 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  85. I.V. Roublev, On minimax and idempotent generalized weak solutions to the Hamilton-Jacobi equation, in Idempotent Mathematics and Mathematical Physics, ed. by G.L. Litvinov, V.P. Maslov. Contemporary Mathematics, vol. 377 (American Mathematical Society, Providence, 2005), pp. 319–338

    Google Scholar 

  86. H.H. Schaefer, Topological Vector Spaces (Macmillan, New York, 1966)

    MATH  Google Scholar 

  87. S.G. Sedukhin, Design and analysis of systolic algorithms for the algebraic path problem. Comput. Artif. Intell. 11(3), 269–292 (1992)

    MathSciNet  MATH  Google Scholar 

  88. M.A. Shubin, Algebraic remarks on idempotent semirings and the kernel theorem in spaces of bounded functions, in Idempotent Analysis, ed. by V.P. Maslov, S.N. Samborskiĭ. Advances in Soviet Mathematics, vol. 13 (American Mathematical Society, Providence, 1992), pp. 151–166

    Google Scholar 

  89. I. Simon, Recognizable sets with multiplicities in the tropical semiring, in Lecture Notes in Compter Science, vol. 324 (Springer, Berlin, 1988), pp. 107–120

    Google Scholar 

  90. A.N. Sobolevskiĭ, Interval arithmetic and linear algebra over idempotent semirings. Dokl. Akad. Nauk 369(6), 747–749 (1999) (in Russian). Englsigh version: Dokl. Math. 60(3), 431–433 (1999)

    Google Scholar 

  91. A. Stepanov, M. Lee, The Standard Template Library (Hewlett-Packard, Palo Alto, 1994)

    Google Scholar 

  92. A.I. Subbotin, Generalized Solutions of First Order PDE’s: The Dynamical Optimization Perspectives (Birkhäuser, Boston, 1995)

    Google Scholar 

  93. A.I. Subbotin, Minimax solutions of first order partial differential equations. Russ. Math. Surv. 51(2), 283–313 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  94. O. Viro, Dequantization of real algebraic geometry on logarithmic paper, in 3rd European Congress of Mathematics, Barcelona, 10–14 July 2000 (Birkhäuser, Boston, 2001), p. 135, http://www.arXiv.org/abs/math/0005163

  95. O. Viro, What is an amoeba? Not. Am. Math. Soc. 49, 916–917 (2002)

    Google Scholar 

  96. O. Viro, From the sixteenth Hilbert problem to tropical geometry. Jpn. J. Math. 3, 1–30 (2008)

    Article  MathSciNet  Google Scholar 

  97. V.V. Voevodin, Mathematical Foundations of Parallel Computings (World Scientific, Singapore, 1992)

    Book  Google Scholar 

  98. N.N. Vorobjev, The extremal matrix algebra. Sov. Math. Dokl. 4, 1220–1223 (1963)

    Google Scholar 

  99. N.N. Vorobjev, Extremal algebra of positive matrices. Elektron. Informationsverarb. Kybernetik 3, 39–71 (1967)

    Google Scholar 

  100. N.N. Vorobjev, Extremal algebra of nonnegative matrices. Elektron. Informationsverarb. Kybernetik 3, 302–312 (1970)

    Google Scholar 

  101. K. Zimmermann, Interval linear systems and optimization problems over max-algebras, in Linear Optimization Problems with Inexact Data, Chap 6, ed. by M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann (Springer, New York, 2006)

    Google Scholar 

  102. (2009) IEEE International Symposium on Parallel & Distributed Processing. Rome, Italy, 23–29 May [ISBN: 978-1-4244-3751-1]

    Google Scholar 

  103. ATLAS, http://math-atlas.sourceforge.net/

  104. LAPACK, http://www.netlib.org/lapack/

  105. PLASMA, http://icl.cs.utk.edu/plasma/

Download references

Acknowledgements

The author is sincerely grateful to V.N. Kolokoltsov, V.P. Maslov, S.N. Sergeev, A.N. Sobolevski and A.V. Tchourkin for valuable suggestions, help and support. This work is supported by the RFBR grant 12-01-00886-a and RFBR/CNRS grant 11-01-93106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigory L. Litvinov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Litvinov, G.L. (2013). Idempotent/Tropical Analysis, the Hamilton–Jacobi and Bellman Equations. In: Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Lecture Notes in Mathematics(), vol 2074. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36433-4_4

Download citation

Publish with us

Policies and ethics