Skip to main content

Transport and Anisotropic Diffusion Models for Movement in Oriented Habitats

  • Chapter
  • First Online:
Dispersal, Individual Movement and Spatial Ecology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2071))

Abstract

A common feature of many living organisms is the ability to move and navigate in heterogeneous environments. While models for spatial spread of populations are often based on the diffusion equation, here we aim to advertise the use of transport models; in particular in cases where data from individual tracking are available. Rather than developing a full general theory of transport models, we focus on the specific case of animal movement in oriented habitats. The orientations can be given by magnetic cues, elevation profiles, food sources, or disturbances such as seismic lines or roads. In this case we are able to present and contrast the three most common scaling limits, (i) the parabolic scaling, (ii) the hyperbolic scaling, and (iii) the moment closure method. We clearly state the underlying assumptions and guide the reader to an understanding of which scaling method is used in what kind of situations. One interesting result is that the macroscopic drift velocity is given by the mean direction of the underlying linear features, and the diffusion is given by the variance-covariance matrix of the underlying oriented habitat. We illustrate our findings with specific applications to wolf movement in habitats with seismic lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is an adaptation of Sect. 4.1.3 from [17]. It was inspired by Dolak and Schmeiser [11] who apply this scaling to chemotactic movement and, while their results do not directly apply here, the methods are the same.

  2. 2.

    This section is an adaptation from [10].

  3. 3.

    A general formula for directional moments, such as \(\int \gamma {\gamma }^{T}d\gamma = \vert {\mathbb{S}}^{n-1}\vert /n\;\mathbb{I}_{n}\) can be found in [16].

References

  1. W. Alt, Biased random walk model for chemotaxis and related diffusion approximation. J. Math. Biol. 9, 147–177 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. A.R.A. Anderson, M.A.J. Chaplain, E.L. Newman, R.J.C. Steele, A.M. Thompson, Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2, 129–154 (2000)

    Article  MATH  Google Scholar 

  3. E. Batschelet, Circular Statistics in Biology (Academic, London, 1981)

    MATH  Google Scholar 

  4. N. Bellomo, Modeling Complex Living Systems - Kinetic Theory and Stochastic Game Approach (Birkhauser, Basel, 2008)

    Google Scholar 

  5. N. Bellomo, M.L. Schiavo, Lecture Notes on the Mathematical Theory of Generalized Boltzmann Methods (World Scientific, Singapore, 2000)

    Google Scholar 

  6. G.P. Brown, B.L. Phillips, J.K. Webb, R. Shine, Toad on the road: use of roads as dispersal corridors by cane toads (bufo marinus) at an invasion front in tropical australia. Biol. Cons. 133(1), 88–94 (2006)

    Article  Google Scholar 

  7. J.A. Carrillo, R.M. Colombo, P. Gwiazda, A. Ulikowska, Structured populations, cell growth and measure valued balance laws. J. Diff. Equ. 252, 3245–3277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Diluted Gases (Springer, New York, 1994)

    Google Scholar 

  9. F.A.C.C. Chalub, P.A. Markovich, B. Perthame, C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh. Math. 142, 123–141 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Chauviere, T. Hillen, L. Preziosi, Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media 2, 333–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Dolak, C. Schmeiser, Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanics. J. Math. Biol. 51, 595–615 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. G.A. Dunn, J.P. Heath, A new hypothesis of contact guidance in tissue cells. Exp. Cell Res. 101, 1–14 (1976)

    Article  Google Scholar 

  13. P. Friedl, E.B. Bröcker, The biology of cell locomotion within three dimensional extracellular matrix. Cell Motil. Life Sci. 57, 41–64 (2000)

    Article  Google Scholar 

  14. P. Friedl, K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. 3, 362–374 (2003)

    Article  Google Scholar 

  15. S. Guido, R.T. Tranquillo, A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. J. Cell. Sci. 105, 317–331 (1993)

    Google Scholar 

  16. T. Hillen, On the L 2-closure of transport equations: the general case. Discrete Contin. Dynam. Syst. Ser. B 5(2), 299–318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Hillen, M 5 mesoscopic and macroscopic models for mesenchymal motion. J. Math. Biol. 53(4), 585–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Hillen, H.G. Othmer, The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math. 61(3), 751–775 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Hillen, K.J. Painter, A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Hillen, P. Hinow, Z.A. Wang, Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete Contin. Dynam. Syst. - B 14(3), 1055–1080 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Hillen, K.J. Painter, M. Winkler, Anisotropic diffusion in oriented environments can lead to singularity formation. Eur. J. Appl. Math. doi:10.1017/S0956792512000447

    Google Scholar 

  22. E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  Google Scholar 

  23. M. Lachowicz, Microscopic, mesoscopic and macroscopic descriptions of complex systems. Prob. Eng. Mech. 26, 54–60 (2011)

    Article  Google Scholar 

  24. H.P. Lipp, A.L. Vyssotski, D.P. Wolfer, S. Renaudineau, M. Savini, G. Troster, G. Dell’Omo, Pigeon homing along highways and exits. Curr. Biol. 14(14), 1239–1249 (2004)

    Article  Google Scholar 

  25. K.J. Lohmann, C.M. Lohmann, C.S. Endres, The sensory ecology of ocean navigation. J. Exp. Biol. 211, 1719–1728 (2008)

    Article  Google Scholar 

  26. F. Lustcher, E. Pachepsky, M.A. Lewis, The effect of dispersal patterns on stream populations. SIAM Rev. 478, 749–7725 (2005)

    Google Scholar 

  27. P.K. Maini, Spatial and spatio-temporal patterns in a cell-haptotaxis model. J. Math. Biol. 27, 507–522 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. H.W. McKenzie, Linear Features Impact Predator-Prey Encounters: Analysis and First Passage Time, MSc thesis, University of Alberta, 2006

    Google Scholar 

  29. H.W. McKenzie, E.H. Merrill, R.J. Spiteri, M.A. Lewis, How linear features alter predator movement and the functional response. Interface Focus 2(2), 205–216 (2012)

    Article  Google Scholar 

  30. P. Moorcroft, M.A. Lewis, Mechanistic Home Range Analysis (Princeton University Press, Princeton, 2006)

    Google Scholar 

  31. G. Oster, J.D. Murray, A. Harris, Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78, 83–125 (1983)

    Google Scholar 

  32. H.G. Othmer, A. Stevens, Aggregation, blowup and collapse: the ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 1044–1081 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. H.G. Othmer, S.R. Dunbar, W. Alt, Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. K.J. Painter, Modelling migration strategies in the extracellular matrix. J. Math. Biol. 58, 511–543 (2009)

    Article  MathSciNet  Google Scholar 

  35. K.J. Painter, T. Hillen, Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion. J. Theor. Biol. doi:10.1016/j.jtbi.2013.01.014

    Google Scholar 

  36. G. Pe’er, D. Saltz, H. Thulke, U. Motro, Response to topography in a hilltopping butterfly and implications for modelling nonrandom dispersal. Anim. Behav. 68, 825–839 (2004)

    Google Scholar 

  37. B. Perthame, Transport Equations in Biology (Birkhäuser, Basel, 2007)

    MATH  Google Scholar 

  38. A.M. Reynolds, T.K. Dutta, R.H. Curtis, S.J. Powers, H.S. Gaur, B.R. Kerry, Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes. J. R. Soc. Interface 8, 568–577 (2011)

    Article  Google Scholar 

  39. S.M. Tomkiewicz, M.R. Fuller, J.G. Kie, K.K. Bates, Global positioning system and associated technologies in animal behaviour and ecological research. Phil. Trans. R. Soc. B 365, 2163–2176 (2010)

    Article  Google Scholar 

  40. R. Weiner, B.A. Schmitt, H. Podhaisky, Rowmap–a row-code with Krylov techniques for large stiff ODEs. Appl. Num. Math. 25, 303–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. P.C. Wilkinson, J.M. Lackie, The influence of contact guidance on chemotaxis of human neutrophil leukocytes. Exp. Cell Res. 145, 255–264 (1983)

    Article  Google Scholar 

  42. K. Wolf, R. Muller, S. Borgmann, E.B. Brocker, P. Friedl, Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269 (2003)

    Article  Google Scholar 

  43. A. Wood, P. Thorogood, An analysis of in vivo cell migration during teleost fin morphogenesis. J. Cell Sci. 66, 205–222 (1984)

    Google Scholar 

Download references

Acknowledgements

Work of Thomas Hillen was supported by NSERC and work of Kevin J. Painter was supported by BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hillen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hillen, T., Painter, K.J. (2013). Transport and Anisotropic Diffusion Models for Movement in Oriented Habitats. In: Lewis, M., Maini, P., Petrovskii, S. (eds) Dispersal, Individual Movement and Spatial Ecology. Lecture Notes in Mathematics(), vol 2071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35497-7_7

Download citation

Publish with us

Policies and ethics