Skip to main content

Life-Cycle Environmental Impacts of Biofuels and Co-products

  • Chapter
  • First Online:
Biofuel Technologies

Abstract

Issues of energy independence and security, global climate change, and the depletion of fossil resources drive research into biofuels and bioproducts. While emerging biofuels and biorefineries pursue lower carbon transportation fuels, careful consideration of a wide range of potential environmental impacts is necessary to avoid unintended consequences. These concerns can be addressed by holistic life-cycle evaluation of bioenergy/biofuel supply chains from raw materials acquisition, to fuel conversion and end use. Life cycle assessment (LCA) is a promising tool for assessing the environmental sustainability of these biofuels. This chapter discusses current biofeedstocks and fuels, introduces the methodological framework of LCA, and explores challenges, critiques, benefits, and applications of LCA in evaluating the environmental performance and sustainability of emergent biofuels and co-product systems. An analysis of algal biodiesel production is presented as a case study, and the broader implications and potential of LCA to inform decision making are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaye AA, Wiedmann T, Feng KS, Crawford RH, Barrett J, Kuylenstierna J, Duffy AP, Koh SCL, McQueen-Mason S (2011) Identification of ‘carbon hot-spots’ and quantification of GHG intensities in the biodiesel supply chain using hybrid LCA and structural path analysis. Environ Sci Technol 45(6):2471–2478. doi:10.1021/es103410q

    Article  PubMed  CAS  Google Scholar 

  • Agusdinata DB, Zhao F, Ileleji K, DeLaurentis D (2011) Life cycle assessment of potential biojet fuel production in the United States. Environ Sci Technol 45(21):9133–9143. doi:10.1021/es202148g

    Article  PubMed  CAS  Google Scholar 

  • Azapagica A, Cliftb R (1999) Allocation of environmental burdens in multiple-function systems. J Clean Prod 7(2):101–119. doi:10.1016/s0959-6526(98)00046-8

    Article  Google Scholar 

  • Baral A, Bakshi BR, Smith RL (2012) Assessing resource intensity and renewability of cellulosic ethanol technologies using eco-LCA. Environ Sci Technol. doi:10.1021/es2025615

    PubMed  Google Scholar 

  • Bare JC, Norris GA, Pennington DW, McKone T (2003) TRACI: the tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6(3–4):49–78

    Google Scholar 

  • Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44(20):7975–7980. doi:10.1021/es102052y

    Article  PubMed  CAS  Google Scholar 

  • Baumann H, Tillman AM (2004) The Hitch Hiker’s guide to LCA: an orientation in life cycle assessment methodology and application. Studentlitteratur, Lund

    Google Scholar 

  • Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manage 38:S475–S479. doi:10.1016/s0196-8904(96)00313-5

    Article  CAS  Google Scholar 

  • Benemann JR, Oswald PI (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass—final report. Department of Energy, Pittsburgh Energy Technology Center

    Google Scholar 

  • Borkowski M, Zaimes GG, Khanna V (2012) Integrating LCA and thermodynamic analysis for sustainability assessment of algal biofuels: comparison of renewable diesel vs. biodiesel. In: IEEE international symposium on sustainable systems and technology, Boston, 21–23 May 2012

    Google Scholar 

  • Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45(16):7060–7067. doi:10.1021/es2006995

    Article  PubMed  CAS  Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102(1):50–56. doi:10.1016/j.biortech.2010.06.048

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131. doi:10.1016/j.tibtech.2007.12.002

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Lee D, Luong TT, Park S, Oh YK, Lee T (2011) Effects of carbon and nitrogen sources on fatty acid contents and composition in the green microalga, Chlorella sp. 227. J Microbiol Biotechnol 21(10):1073–1080. doi:10.4014/jmb.1103.03038

    Article  PubMed  CAS  Google Scholar 

  • Chwalowski M (1996) Critical questions about the full fuel cycle analysis. Energy Convers Manage 37(6–8):1259–1263. doi:10.1016/0196-8904(95)00330-4

    Article  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819. doi:10.1021/es902838n

    Article  PubMed  CAS  Google Scholar 

  • Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM (2011) Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environ Sci Technol 45(17):7554–7560. doi:10.1021/es200760n

    Article  PubMed  CAS  Google Scholar 

  • Cleveland CJ (2010) Net energy analysis. Environmental information coalition, national council for science and the environment. http://www.eoearth.org/article/Net_energy_analysis. Accessed 4 July 2011

  • Collet P, Helias A, Lardon L, Ras M, Goy RA, Steyer JP (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102(1):207–214. doi:10.1016/j.biortech.2010.06.154

    Article  PubMed  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48(6):1146–1151. doi:10.1016/j.cep.2009.03.006

    Article  CAS  Google Scholar 

  • Dale BE (2007) Thinking clearly about biofuels: ending the irrelevant ‘net energy’ debate and developing better performance metrics for alternative fuels. Biofuels Bioprod Biorefin 1(1):14–17. doi:10.1002/bbb.5

    Article  CAS  Google Scholar 

  • Deru MP, NREL (2009) U.S. Life Cycle Inventory Database Roadmap. National Renewable Energy Laboratory, U.S. Department of Energy

    Google Scholar 

  • Dragone G, Fernandes B, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. Appl Microbiol 2:1355–1366

    Google Scholar 

  • Dreyer L, Niemann A, Hauschild M (2003) Comparison of three different LCIA methods: EDIP97, CML2001 and eco-indicator 99. Int J Life Cycle Assess 8(4):191–200. doi:10.1007/bf02978471

    Article  CAS  Google Scholar 

  • Ecoinvent Centre (2007) Ecoinvent data v2.0. http://www.ecoinvent.org

  • Edward DF, Jeongwoo H, Ignasi P-R, Amgad E, Michael QW (2012) Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels. Environ Res Lett 7(1):014030

    Article  Google Scholar 

  • Eisentraut, A. (2010). Sustainable production of second-generation biofuels: potential and perspectives in major economies and developing countries, OECD Publishing

    Google Scholar 

  • Ekvall T, Weidema BP (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9(3):161–171. doi:10.1065/Lca2004.03.148

    Article  Google Scholar 

  • ELCD/ILCD (2012) International/european reference life cycle data system. http://lca.jrc.ec.europa.eu/lcainfohub/datasetArea.vm. Accessed June 2012

  • EPA (2010) EPA finalizes regulations for the national renewable fuel standard program for 2010 and beyond. Office of transportation and air quality, U.S. Environmental Protection Agency

    Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238. doi:10.1126/science.1152747

    Article  PubMed  CAS  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508

    Article  PubMed  CAS  Google Scholar 

  • Ferrell J, Sarisky-Reed V (2010) National algal biofuels technology roadmap, a technology roadmap resulting from the National Algal Biofuels Workshop.140

    Google Scholar 

  • Frischknecht R (2005) Ecoinvent Data v1. 1 (2004): from heterogenous databases to unified and transparent LCI data. Int J Life Cycle Assess 10(1):1–2

    Google Scholar 

  • Frischknecht R, Steiner R, Jungbluth N (2009) The ecological scarcity method–eco-factors 2006. A method for impact assessment in LCA, Environ Studies No 906

    Google Scholar 

  • GaBi 5/PE International PE International. http://www.gabi-software.com/international/index/. Accessed June 2012

  • Goedkoop M, Heijungs R, et al (2009) ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. VROM–Ruimte en Milieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, http://www.lcia-recipe.net

  • Golueke CG, Oswald WJ (1965) Harvesting and processing sewage-grown planktonic algae. J Water Pollut Con F pp 471–498

    Google Scholar 

  • GREET Model 1_2011 (2010) Argonne National Laboratory, U.S. Department of Energy. http://greet.es.anl.gov. Accessed 30 Nov 2011

  • Hammerschlag R (2006) Ethanol’s energy return on investment: a survey of the literature 1990–present. Environ Sci Technol 40(6):1744–1750. doi:10.1021/es052024h

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103(30):11206–11210. doi:10.1073/pnas.0604600103

    Article  PubMed  CAS  Google Scholar 

  • Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv 29(2):189–198. doi:10.1016/j.biotechadv.2010.11.001

    Article  PubMed  CAS  Google Scholar 

  • Hsu DD, Inman D, Heath GA, Wolfrum EJ, Mann MK, Aden A (2010) Life cycle environmental impacts of selected US ethanol production and use pathways in 2022. Environ Sci Technol 44(13):5289–5297

    Article  PubMed  CAS  Google Scholar 

  • Huesemann MH, Benemann JR (2009) Biofuels from microalgae: review of products, processes and potential, with special focus on Dunaliella sp. Related Information: Alga Dunaliella Biodivers Physiol Genomics Biotechnol 14:445–474

    Google Scholar 

  • Huijbregts MAJ, Hellweg S, Frischknecht R, Hungerbühler K, Hendriks AJ (2008) Ecological footprint accounting in the life cycle assessment of products. Ecol Econ 64(4):798–807

    Article  Google Scholar 

  • Huo H, Wang M, Bloyd C, Putsche V (2008) Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels. Environ Sci Technol 43(3):750–756. doi:10.1021/es8011436

    Article  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27(8):631–635. doi:10.1016/s0141-0229(00)00266-0

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. R. K. Pachauri and A. Reisinger, intergovernmental panel on climate change

    Google Scholar 

  • IPCC: M.L. Parry (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability : Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

    Google Scholar 

  • IPCC: B. Metz (2007) Climate Change 2007: Mitigation of climate change: contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ismail M, Rossi A (2010) A compilation of bioenergy sustainability initiatives. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • ISO (2006) ISO 14040 Environmental management—life cycle assessment—principles and framework. International Organization for Standardization, Switzerland

    Google Scholar 

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–330

    Article  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413. doi:10.1016/j.biortech.2009.09.038

    Article  PubMed  CAS  Google Scholar 

  • Kadam KL (2001) Microalgae production from power plant flue gas: environmental implications on life cycle basis (trans: Energy USDo). National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Kaufman AS, Meier PJ, Sinistore JC, Reinemann DJ (2010) Applying life-cycle assessment to low carbon fuel standards–how allocation choices influence carbon intensity for renewable transportation fuels. Energy Policy 38(9):5229–5241

    Article  CAS  Google Scholar 

  • Kendall A, Chang B (2009) Estimating life cycle greenhouse gas emissions from corn–ethanol: a critical review of current U.S. practices. J Clean Prod 17(13):1175–1182. doi:10.1016/j.jclepro.2009.03.003

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenergy 29(6):426–439. doi:10.1016/j.biombioe.2005.06.004

    Article  Google Scholar 

  • Kim S, Dale BE (2008) Life cycle assessment of fuel ethanol derived from corn grain via dry milling. Bioresour Technol 99(12):5250–5260. doi:10.1016/j.biortech.2007.09.034

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Dale B, Jenkins R (2009) Life cycle assessment of corn grain and corn stover in the United States. Int J Life Cycle Assess 14(2):160–174. doi:10.1007/s11367-008-0054-4

    Article  CAS  Google Scholar 

  • Kulkarni R, Zhang HC, Jianzhi L, Junning S (2005) A framework for environmental impact assessment tools: comparison validation and application using case study of electronic products. In: Proceedings of the 2005 IEEE international symposium on electronics and the environment, 16–19 May 2005, pp 210–214. doi:10.1109/isee.2005.1437027

  • Landis AE, Theis TL (2008) Comparison of life cycle impact assessment tools in the case of biofuels. In: IEEE international symposium on electronics and the environment, 19–22 May 2008. Proceedings of the IEEE ISEE, pp 1–7. doi:10.1109/isee.2008.4562869

  • Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481. doi:10.1021/es900705j

    Article  PubMed  CAS  Google Scholar 

  • Lavigne A, Powers SE (2007) Evaluating fuel ethanol feedstocks from energy policy perspectives: a comparative energy assessment of corn and corn stover. Energy Policy 35(11):5918–5930. doi:10.1016/j.enpol.2007.07.002

    Article  Google Scholar 

  • Lesage P, Deschenes L, Samson R (2007) Evaluating holistic environmental consequences of brownfield management options using consequential life cycle assessment for different perspectives. Environ Manage 40(2):323–337. doi:10.1007/S00267-005-0328-6

    Article  PubMed  Google Scholar 

  • Liska AJ, Cassman KG (2008) Towards standardization of life-cycle metrics for biofuels: greenhouse gas emissions mitigation and net energy yield. J Biobased Mater Bioenergy 2(3):187–203. doi:10.1166/jbmb.2008.402

    Article  Google Scholar 

  • Liska AJ, Yang HS, Bremer VR, Klopfenstein TJ, Walters DT, Erickson GE, Cassman KG (2009) Improvements in life cycle energy efficiency and greenhouse gas emissions of corn-ethanol. J Ind Ecol 13(1):58–74. doi:10.1111/j.1530-9290.2008.00105.x

    Article  CAS  Google Scholar 

  • Lund H, Mathiesen BV, Christensen P, Schmidt JH (2010) Energy system analysis of marginal electricity supply in consequential LCA. Int J Life Cycle Assess 15(3):260–271. doi:10.1007/S11367-010-0164-7

    Article  CAS  Google Scholar 

  • Luo L, van der Voet E, Huppes G, Udo de Haes H (2009) Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. Int J Life Cycle Assess 14(6):529–539. doi:10.1007/s11367-009-0112-6

    Article  CAS  Google Scholar 

  • McKone TE, Nazaroff WW, Berck P, Auffhammer M, Lipman T, Torn MS, Masanet E, Lobscheid A, Santero N, Mishra U, Barrett A, Bomberg M, Fingerman K, Scown C, Strogen B, Horvath A (2011) Grand challenges for life-cycle assessment of biofuels. Environ Sci Technol 45(5):1751–1756. doi:10.1021/es103579c

    Article  PubMed  CAS  Google Scholar 

  • Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S, Felzer BS, Wang XD, Sokolov AP, Schlosser CA (2009) Indirect emissions from biofuels: how important? Science 326(5958):1397–1399. doi:10.1126/Science.1180251

    Article  PubMed  CAS  Google Scholar 

  • Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45(13):5861–5868. doi:10.1021/es200109z

    Article  PubMed  CAS  Google Scholar 

  • Murphy D, Hall C, Powers B (2011a) New perspectives on the energy return on (energy) investment (EROI) of corn ethanol. Environ Dev Sustain 13(1):179–202. doi:10.1007/s10668-010-9255-7

    Article  Google Scholar 

  • Murphy DJ, Hall CAS, Dale M, Cleveland C (2011b) Order from chaos: a preliminary protocol for determining the EROI of fuels. Sustainability 3(10):1888–1907

    Article  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597. doi:10.1016/j.rser.2009.10.003

    Article  CAS  Google Scholar 

  • Nonhebel S (2012) Global food supply and the impacts of increased use of biofuels. Energy 37(1):115–121. doi:10.1016/j.energy.2011.09.019

    Article  Google Scholar 

  • Olsen SI, Christensen FM, Hauschild M, Pedersen F, Larsen HF, Tørsløv J (2001) Life cycle impact assessment and risk assessment of chemicals—a methodological comparison. Environ Impact Assess Rev 21(4):385–404. doi:10.1016/s0195-9255(01)00075-0

    Article  Google Scholar 

  • Patzek TW (2004) Thermodynamics of the corn-ethanol biofuel cycle. Crit Rev Plant Sci 23(6):519–567. doi:10.1080/07352680490886905

    Article  CAS  Google Scholar 

  • Patzek TW, Pimentel D (2005) Thermodynamics of energy production from biomass. Taylor & Francis, London

    Google Scholar 

  • Pimentel D, Patzek T, Cecil G (2007) Ethanol production: energy, economic, and environmental losses. In: Whitacre D, Ware G, Nigg H et al. (eds) Reviews of environmental contamination and toxicology, vol 189. Springer, New York, pp 25–41. doi:10.1007/978-0-387-35368-5_2

    Google Scholar 

  • Pradhan A, Shrestha DS, Mcaloon AJ, Yee WC, Haas MJ, Duffield JA (2011) Energy life-cycle assessment of soybean biodiesel revisited. Am Soc Agric Biol Eng 54(3):1031–1039

    Google Scholar 

  • Querini F, Morel S, Boch V, Rousseaux P (2011) USEtox relevance as an impact indicator for automotive fuels. Application on diesel fuel, gasoline and hard coal electricity. Int J Life Cycle Assess 16(8):829–840

    Google Scholar 

  • Ranganathan J, Corbier L, Bhatia P, Schmitz S, Gage P, Oren K (2004) The greenhouse gas protocol: a corporate accounting and reporting standard (Revised edn). World Resources Institute and World Business Council for Sustainable Development, Washington

    Google Scholar 

  • Reinhard J, Zah R (2009) Global environmental consequences of increased biodiesel consumption in Switzerland: consequential life cycle assessment. J Cleaner Prod 17:S46–S56. doi:10.1016/J.Jclepro.2009.05.003

    Article  CAS  Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    Article  CAS  Google Scholar 

  • Sanden BA, Karlstrom M (2007) Positive and negative feedback in consequential life-cycle assessment. J Cleaner Prod 15(15):1469–1481. doi:10.1016/J.Jclepro.2006.03.005

    Article  Google Scholar 

  • Sander K, Murthy G (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15(7):704–714. doi:10.1007/s11367-010-0194-1

    Article  CAS  Google Scholar 

  • Schmidt JH (2008) System delimitation in agricultural consequential LCA—outline of methodology and illustrative case study of wheat in Denmark. Int J Life Cycle Assess 13(4):350–364. doi:10.1007/S11367-008-0016-X

    Article  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240. doi:10.1126/Science.1151861

    Article  PubMed  CAS  Google Scholar 

  • Sheehan JJ (2009) Biofuels and the conundrum of sustainability. Curr Opin Biotechnol 20(3):318–324. doi:10.1016/j.copbio.2009.05.010

    Article  PubMed  CAS  Google Scholar 

  • Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) An overview of biodiesel and petroleum diesel life cycles (NREL). National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416. doi:10.1016/j.biotechadv.2009.03.001

    Article  PubMed  CAS  Google Scholar 

  • SimaPro 7.3.3/Pre Consultants Pre Consultants. http://www.pre-sustainability.com/. Accessed June 2012

  • Sims R, Taylor M, et al (2008) From 1st- to 2nd-generation biofuel technologies: an overview of current industry and RD&D activities. International energy agency and organization for economic cooperation and development

    Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580. doi:10.1016/j.biortech.2009.11.046

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555. doi:10.1016/j.apenergy.2010.12.012

    Article  CAS  Google Scholar 

  • Sissine F (2007) Energy independence and security act of 2007: a summary of major provisions. CRS report for congress, vol RL34294. Library of congress, congressional research service, Washington

    Google Scholar 

  • Soratana K, Landis AE (2011) Evaluating industrial symbiosis and algae cultivation from a life cycle perspective. Bioresour Technol 102(13):6892–6901. doi:10.1016/j.biortech.2011.04.018

    Article  PubMed  CAS  Google Scholar 

  • Soratana K, Harper WF Jr, Landis AE (2012) Microalgal biodiesel and the renewable fuel standard’s greenhouse gas requirement. Energy Policy 46:498–510. doi:10.1016/j.enpol.2012.04.016

    Article  CAS  Google Scholar 

  • Sundin H, Ranganathan J (2002) Managing business greenhouse gas emissions: the greenhouse gas protocol–a strategic and operational tool. Corporate Environ Strategy 9(2):137–144

    Google Scholar 

  • Timilsina GR, Beghin JC, van der Mensbrugghe D, Mevel S (2012) The impacts of biofuels targets on land-use change and food supply: a global CGE assessment. Agric Econ 43(3):315–332. doi:10.1111/j.1574-0862.2012.00585.x

    Article  Google Scholar 

  • Vasudevan V, Stratton RW, Pearlson MN, Jersey GR, Beyene AG, Weissman JC, Rubino M, Hileman JI (2012) Environmental performance of algal biofuel technology options. Environ Sci Technol. doi:10.1021/es2026399

    Google Scholar 

  • Weidema BP, Frees N, Nielsen AM (1999) Marginal production technologies for life cycle inventories. Int J Life Cycle Assess 4(1):48–56

    Article  Google Scholar 

  • Whittaker C, McManus MC, Hammond GP (2011) Greenhouse gas reporting for biofuels: a comparison between the RED, RTFO and PAS2050 methodologies. Energy Policy 39(10): 5950–5960

    Google Scholar 

  • Williams PRD, Inman D, Aden A, Heath GA (2009) Environmental and sustainability factors associated with next-generation biofuels in the US: what do we really know? Environ Sci Technol 43(13):4763–4775

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9(3):178–189. doi:10.1002/elsc.200800111

    Article  CAS  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165. doi:10.1016/j.biortech.2010.07.017

    Article  PubMed  CAS  Google Scholar 

  • Yazan DM, Garavelli AC, Petruzzelli AM, Albino V (2011) The effect of spatial variables on the economic and environmental performance of bioenergy production chains. Int J Prod Econ 131(1):224–233. doi:10.1016/j.ijpe.2010.07.017

    Article  Google Scholar 

  • You FQ, Tao L, Graziano DJ, Snyder SW (2012) Optimal design of sustainable cellulosic biofuel supply chains: multiobjective optimization coupled with life cycle assessment and input-output analysis. AIChE J 58(4):1157–1180. doi:10.1002/aic.12637

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Khanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zaimes, G., Borkowski, M., Khanna, V. (2013). Life-Cycle Environmental Impacts of Biofuels and Co-products. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_18

Download citation

Publish with us

Policies and ethics