Skip to main content

Status and Perspective of Organic Solvent Based Pretreatment of Lignocellulosic Biomass for Enzymatic Saccharification

  • Chapter
  • First Online:
Pretreatment Techniques for Biofuels and Biorefineries

Part of the book series: Green Energy and Technology ((GREEN))

  • 2523 Accesses

Abstract

Enzymatic saccharification of lignocellulosic biomass encounters many prohibitive factors which make it difficult to be developed on an industrial scale. Pretreatment has been found essentially effective for increasing the susceptibility of substrates to the enzyme, for example, by removing the lignin barrier and breaking down the crystal structure of cellulose in the raw materials. As a green and efficient technique, pretreatment of lignocellulosic biomass employing organic solvents and organic electrolyte solution (OES) is introduced in this chapter. Future prospects and recommended research work for developing these technologies for practical application, as well as coupling production of high-value bio-products from lignocellulosic biomass, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489. doi:10.1126/science.1114736

    Article  Google Scholar 

  2. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966. doi:10.1016/j.biortech.2005.01.010

    Article  Google Scholar 

  3. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481. doi:10.1016/j.biotechadv.2006.03.003

    Article  Google Scholar 

  4. Guragain YN, De Coninck J, Husson F, Durand A, Rakshit SK (2011) Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresour Technol 102(6):4416–4424. doi:10.1016/j.biortech.2010.11.125

    Article  Google Scholar 

  5. Chandra R, Bura R, Mabee W, Berlin A, Pan X, Saddler J, Olsson L (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Biofuels: Advances in biochemical engineering/biotechnology, vol 108. Springer, Heidelberg, pp 108:67–93. doi:10.1007/10_2007_064

    Google Scholar 

  6. Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. doi:10.1016/S0960-8524(01)00212-7

    Article  MathSciNet  Google Scholar 

  7. Fan L, Lee Y-H, Gharpuray M (1982) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Microbial Reactions: Advances in biochemical engineering/biotechnology, vol 23. Springer, Heidelberg. pp 157–187. doi:10.1007/3540116982_4

    Google Scholar 

  8. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686. doi:10.1016/j.biortech.2004.06.025

    Article  Google Scholar 

  9. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod Biorefin 2(1):26–40. doi:10.1002/bbb.49

    Article  Google Scholar 

  10. Kumar D, Murthy G (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4(27). doi:10.1186/1754-6834-4-27

    Article  MathSciNet  Google Scholar 

  11. Lynd L, Elamder R, Wyman C (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57–58(1):741–761. doi:10.1007/bf02941755

    Article  Google Scholar 

  12. Tian X, Fang Z, Guo F (2011) Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels, Bioprod Biorefin 6(3):335–350. doi:10.1002/bbb.346

    Google Scholar 

  13. Kleinert TN (1971) Organosolv pulping and recovery process. US Patent 3585104.

    Google Scholar 

  14. Holtzapple MT, Humphrey AE (1984) The effect of organosolv pretreatment on the enzymatic-hydrolysis of poplar. Biotechnol Bioeng 26(7):670–676. doi:10.1002/bit.260260706

    Article  Google Scholar 

  15. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827. doi:10.1007/s00253-009-1883-1

    Article  Google Scholar 

  16. Zhu L (2005) Fundamental study of structural features affecting enzymatic hydrolysis of lignocellulosic biomass. Ph.D. Dissertation, Texas A&M University, College Station, Texas, p 306

    Google Scholar 

  17. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. doi:10.1128/MMBR.66.3.506-577.2002

    Article  Google Scholar 

  18. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18. doi:10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  19. Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100(17):3948–3962. doi:10.1016/j.biortech.2009.01.075

    Article  Google Scholar 

  20. Zhu L, O’ Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99(9):3817–3828. doi:10.1016/j.biortech.2007.07.033

    Article  Google Scholar 

  21. Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481. doi:10.1002/bit.20453

    Article  Google Scholar 

  22. Hallac BB, Ray M, Murphy RJ, Ragauskas AJ (2010) Correlation between anatomical characteristics of ethanol organosolv pretreated Buddleja davidii and its enzymatic conversion to glucose. Biotechnol Bioeng 107(5):795–801. doi:10.1002/bit.22884

    Article  Google Scholar 

  23. Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Ind Eng Chem Res 49(4):1467–1472. doi:10.1021/ie900683q

    Article  Google Scholar 

  24. Del Rio LF, Chandra RP, Saddler JN (2010) The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed Lodgepole pine. Appl Biochem Biotechnol 161(1–8):1–21. doi:10.1007/s12010-009-8786-6

    Google Scholar 

  25. Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86(1):5–37. doi:10.1385/abab:84-86:1-9:5

    Article  Google Scholar 

  26. Draude KM, Kurniawan CB, Duff SJB (2001) Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour Technol 79(2):113–120. doi:10.1016/S0960-8524(01)00055-4

    Article  Google Scholar 

  27. Thompson DN, Chen HC, Grethlein HE (1992) Comparison of pretreatment methods on the basis of available surface area. Bioresour Technol 39(2):155–163. doi:10.1016/0960-8524(92)90135-K

    Article  Google Scholar 

  28. Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J (2005) Weak lignin-binding enzymes. Appl Biochem Biotechnol 121(1):163–170. doi:10.1385/abab:121:1-3:0163

    Article  Google Scholar 

  29. Gunjikar TP, Sawant SB, Joshi JB (2001) Shear deactivation of cellulase, exoglucanase, endoglucanase, and β-Glucosidase in a mechanically agitated reactor. Biotechnol Progr 17(6):1166–1168. doi:10.1021/bp010114u

    Article  Google Scholar 

  30. Mooney CA, Mansfield SD, Touhy MG, Saddler JN (1998) The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresour Technol 64(2):113–119. doi:10.1016/S0960-8524(97)00181-8

    Article  Google Scholar 

  31. Meunier-Goddik L, Penner MH (1998) Enzyme-catalyzed saccharification of model celluloses in the presence of lignacious residues. J Agr Food Chem 47(1):346–351. doi:10.1021/jf980407b

    Article  Google Scholar 

  32. Ishizawa C, Jeoh T, Adney W, Himmel M, Johnson D, Davis M (2009) Can delignification decrease cellulose digestibility in acid pretreated corn stover? Cellulose 16(4):677–686. doi:10.1007/s10570-009-9313-1

    Article  Google Scholar 

  33. Zhang XM, Meng LY, Xu F, Sun RC (2011) Pretreatment of partially delignified hybrid poplar for biofuels production: characterization of organosolv hemicelluloses. Ind Crops Prod 33(2):310–316. doi:10.1016/j.indcrop.2010.11.016

    Article  Google Scholar 

  34. Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. In: Prausnitz JM (ed) Annual review of chemical and biomolecular engineering, vol 2. Annual review of chemical and biomolecular engineering. Annual Reviews, Palo Alto, pp 121–145. doi:10.1146/annurev-chembioeng-061010-114205

    Google Scholar 

  35. Kong F, Engler C, Soltes E (1992) Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 34–35(1):23–35. doi:10.1007/bf02920531

    Article  Google Scholar 

  36. Mitchell DJ, Grohmann K, Himmel ME, Dale BE, Schroeder HA (1990) Effect of the degree of acetylation on the enzymatic digestion of acetylated xylans. J Wood Chem Technol 10(1):111–121. doi:10.1080/02773819008050230

    Article  Google Scholar 

  37. Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YHP (2010) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108(1):22–30. doi:10.1002/bit.22919

    Article  Google Scholar 

  38. Hong J, Ye X, Zhang YHP (2007) Quantitative determination of cellulose accessibility to cellulase based on adsorption of a non-hydrolytic fusion protein containing CBM and GFP with its applications. Langmuir 23(25):12535–12540. doi:10.1021/la7025686

    Article  Google Scholar 

  39. Zhu Z, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang YHP (2009) Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng 103(4):715–724. doi:10.1002/bit.22307

    Article  Google Scholar 

  40. Koo BW, Min BC, Gwak KS, Lee SM, Choi JW, Yeo H, Choi IG (2012) Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass Bioenerg 42:24–32. doi:10.1016/j.biombioe.2012.03.012

    Article  Google Scholar 

  41. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925. doi:10.1002/bit.21959

    Article  Google Scholar 

  42. Tian X, Fang Z, Jiang D, Sun X (2011) Pretreatment of microcrystalline cellulose in organic electrolyte solutions for enzymatic hydrolysis. Biotechnol Biofuels 4:53. doi: 10.1186/1754-6834-4-53

    Article  Google Scholar 

  43. Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77(1):41–46. doi:10.1016/j.carbpol.2008.12.003

    Article  Google Scholar 

  44. Zhou W, Xu Y, Schüttler H-B (2010) Cellulose hydrolysis in evolving substrate morphologies III: time-scale analysis. Biotechnol Bioeng 107(2):224–234. doi:10.1002/bit.22814

    Article  Google Scholar 

  45. Pan X, Xie D, Kang KY, Yoon SL, Saddler JN (2007) Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substrates. Appl Biochem Biotechnol 137:367–377. doi:10.1007/s12010-007-9065-z

    Article  Google Scholar 

  46. Hayashi N, Sugiyama J, Okano T, Ishihara M (1997) Selective degradation of the cellulose I alpha component in Cladophora cellulose with Trichoderma viride cellulase. Carbohydr Res 305(1):109–116. doi:10.1016/S0008-6215(97)00281-4

    Article  Google Scholar 

  47. Baker AA, Helbert W, Sugiyama J, Miles MJ (2000) New insight into cellulose structure by atomic force microscopy shows the I alpha crystal phase at near-atomic resolution. Biophys J 79(2):1139–1145. doi:10.1016/S0006-3495(00)76367-3

    Article  Google Scholar 

  48. Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26(9):1341–1417. doi:10.1016/S0079-6700(01)00019-3

    Article  Google Scholar 

  49. Weimer PJ, French AD, Calamari TA (1991) Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria. Appl Environ Microb 57(11):3101–3106

    Google Scholar 

  50. Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37(23):8548–8555. doi:10.1021/ma0485585

    Article  Google Scholar 

  51. Wada M, Ike M, Tokuyasu K (2010) Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym Degrad Stab 95(4):543–548. doi:10.1016/j.polymdegradstab.2009.12.014

    Article  Google Scholar 

  52. Igarashi K, Wada M, Samejima M (2007) Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J 274(7):1785–1792. doi:10.1111/j.1742-4658.2007.05727.x

    Article  Google Scholar 

  53. Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63(1):173–180. doi:10.1139/v85-027

    Article  Google Scholar 

  54. Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 345(7):965–970. doi:10.1016/j.carres.2010.02.010

    Article  Google Scholar 

  55. Chum HL, Johnson DK, Black SK (1990) Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Ind Eng Chem Res 29(2):156–162. doi:10.1021/ie00098a003

    Article  Google Scholar 

  56. Parajo JC, Alonso JL, Santos V (1995) Kinetics of catalyzed organosolv processing of pine wood. Ind Eng Chem Res 34(12):4333–4342. doi:10.1021/ie00039a025

    Article  Google Scholar 

  57. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628. doi:.1007/s00253-002-1058-9

    Article  Google Scholar 

  58. Varnai A, Siika-aho M, Viikari L (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb Technol 46(3–4):185–193. doi:10.1016/j.enzmictec.2009.12.013

    Article  Google Scholar 

  59. Mesa L, Gonzalez E, Cara C, Gonzalez M, Castro E, Mussatto SI (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168(3):1157–1162. doi:10.1016/j.cej.2011.02.003

    Article  Google Scholar 

  60. Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of Miscanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48(18):8328–8334. doi:10.1021/ie9006672

    Article  Google Scholar 

  61. Del Rio LF, Chandra RP, Saddler JN (2011) The effects of increasing swelling and anionic charges on the enzymatic hydrolysis of organosolv-pretreated softwoods at low enzyme loadings. Biotechnol Bioeng 108(7):1549–1558. doi:10.1002/bit.23090

    Article  Google Scholar 

  62. Bruce A, Diner JF (2009) Organic solvent pretreatment of biomass to enhance enzymatic saccharification. US Patent: US 2010/0159520 A1

    Google Scholar 

  63. Ghose TK, Pannir Selvam PV, Ghosh P (1983) Catalytic solvent delignification of agricultural residues: organic catalysts. Biotechnol Bioeng 25(11):2577–2590. doi:10.1002/bit.260251108

    Article  Google Scholar 

  64. Araque E, Parra C, Freer J, Contreras D, Rodriguez J, Mendonca R, Baeza J (2008) Evaluation of organosolv pretreatment for the conversion of pinus radiata D. Don to ethanol. Enzyme Microb Technol 43(2):214–219. doi:10.1016/j.enzmictec.2007.08.006

    Article  Google Scholar 

  65. Bonn G, Hormeyer HF, Bobleter O (1987) Hydrothermal and organosolv pretreatments of poplar wood and wheat straw for saccharification by a Trichoderma viride cellulase. Wood Sci Technol 21(2):179–185. doi:10.1007/BF00376197

    Article  Google Scholar 

  66. Mabee W, Gregg D, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan X, Kendall Pye E, Saddler J (2006) Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129(1):55–70. doi:10.1385/abab:129:1:55

    Article  Google Scholar 

  67. Huijgen WJJ, Reith JH, den Uil H (2010) Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Ind Eng Chem Res 49(20):10132–10140. doi:10.1021/ie101247w

    Article  Google Scholar 

  68. Park N, Kim HY, Koo BW, Yeo H, Choi IG (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresour Technol 101(18):7046–7053. doi:10.1016/j.biortech.2010.04.020

    Article  Google Scholar 

  69. Pan XJ, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46(8):2609–2617. doi:10.1021/ie061576 l

    Article  Google Scholar 

  70. Ooshima H, Kurakake M, Kato J, Harano Y (1992) Pretreatment of wood by uct-solvent for the enzymatic-hydrolysis. Appl Biochem Biotechnol 37(2):165–176. doi:10.1007/bf02921668

    Article  Google Scholar 

  71. Mesa L, Gonzalez E, Cara C, Ruiz E, Castro E, Mussatto SI (2010) An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. J Chem Technol Biotechnol 85(8):1092–1098. doi:10.1002/jctb.2404

    Article  Google Scholar 

  72. Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33. doi:10.1016/S0960-8524(99)00161-3

    Article  Google Scholar 

  73. Wang M, Leitch M, Xu C (2009) Synthesis of pheno-formaldehyde resol resins using organosolv pine lignins. Eur Polym J 45(12):3380–3388. doi:10.1016/j.eurpolymj.2009.10.003

    Article  Google Scholar 

  74. Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54(16):5806–5813. doi:10.1021/jf0605392

    Article  Google Scholar 

  75. Ramires EC, Megiatto JD, Gardrat C, Castellan A, Frollini E (2010) Valorization of an industrial organosolv–sugarcane bagasse lignin: characterization and use as a matrix in bio-based composites reinforced with sisal fibers. Biotechnol Bioeng 107(4):612–621. doi:10.1002/bit.22847

    Article  Google Scholar 

  76. Piskorz J, Majerski P, Radlein D, Scott DS (1989) Conversion of lignins to hydrocarbon fuels. Energy Fuels 3(6):723–726. doi:10.1021/ef00018a011

    Article  Google Scholar 

  77. Hu G, Cateto C, Pu Y, Samuel R, Ragauskas AJ (2011) Structural characterization of switchgrass lignin after ethanol organosolv pretreatment. Energy Fuels 26(1):740–745. doi:10.1021/ef201477p

    Article  Google Scholar 

  78. Holladay JE, Bozell JJ, White JF, Johnson D (2004) Top value-added chemicals from biomass volume II—results of screening for potential candidates from biorefinery lignin. Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830, pp 1–79

    Google Scholar 

  79. Milstein O, Nicklas B, Hüttermann A (1989) Oxidation of aromatic compounds in organic solvents with laccase from Trametes versicolor. Appl Microb Biotechnol 31(1):70–74. doi:10.1007/bf00252530

    Article  Google Scholar 

  80. Sena-Martins G, Almeida-Vara E, Duarte JC (2008) Eco-friendly new products from enzymatically modified industrial lignins. Ind Crops Prod 27(2):189–195. doi:10.1016/j.indcrop.2007.07.016

    Article  Google Scholar 

  81. Vishtal A, Kraslawski A (2011) Challenges of lignins. BioResources 6(3):3547–3568

    Google Scholar 

  82. Liu J, Takada R, Karita S, Watanabe T, Honda Y, Watanabe T (2010) Microwave-assisted pretreatment of recalcitrant softwood in aqueous glycerol. Bioresour Technol 101(23):9355–9360. doi:10.1016/j.biortech.2010.07.023

    Article  Google Scholar 

  83. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975. doi:10.1021/ja025790m

    Article  Google Scholar 

  84. Phillips DM, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, De Long HC, Mantz RA (2004) Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126(44):14350–14351. doi:10.1021/ja046079f

    Article  Google Scholar 

  85. Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95(5):904–910. doi:10.1002/bit.21047

    Article  Google Scholar 

  86. Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100(9):2580–2587. doi:10.1016/j.biortech.2008.11.052

    Article  Google Scholar 

  87. Zhang YHP, Cui JB, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7(2):644–648. doi:10.1021/bm050799c.

    Article  Google Scholar 

  88. Chanzy H, Peguy A, Chaunis S, Monzie P (1980) Oriented cellulose films and fibers from a mesophase system. J Polym Sci 18(5):1137–1144. doi:10.1002/pol.1980.180180517

    Google Scholar 

  89. MacDDM (1977) The spinning of unconventional cellulose solutions. In: Solvent spun rayon, modified cellulose fibers and derivatives. ACS Symp Ser, 58:25–39. doi:10.1021/bk-1977-0058.ch003

    Article  Google Scholar 

  90. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9(1):63–69. doi:10.1039/b607614a

    Article  Google Scholar 

  91. Åsa Östlund DL, Lars N, Krister H, Magnus N (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules 10(9):2401–2407. doi:10.1021/bm900667q

    Article  Google Scholar 

  92. Thomas H, Andreas K (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polímeros—Ciência e Tecnologia 5(2):84–90

    Google Scholar 

  93. Sui XF, Yuan JY, Yuan WZ, Zhou M (2008) Preparation of cellulose nanofibers/nanoparticles via electrospray. Chem Lett 37(1):114–115. doi:10.1246/cl.2008.114

    Article  Google Scholar 

  94. Luo MK, Neogi AN, West H (2009) Dissolution of cellulose in mixed solvent systems. USPTO Patent application no.20090088564

    Google Scholar 

  95. Rinaldi R (2011) Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun 47(1):511–513. doi:10.1039/c0cc02421j

    Article  Google Scholar 

  96. Ishii D, Tatsumi D, Matsumoto T, Murata K, Hayashi H, Yoshitani H (2006) Investigation of the structure of cellulose in LiCl/DMAc solution and its gelation behavior by small-angle X-ray scattering measurements. Macromol Biosci 6(4):293–300. doi:10.1002/mabi.200500231

    Article  Google Scholar 

  97. Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223. doi:10.1002/bit.21386

    Article  Google Scholar 

  98. Zhang H, Wu J, Zhang J, He JS (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38(20):8272–8277. doi:10.1021/ma0505676

    Article  Google Scholar 

  99. Novak KM (ed) (2002) Drug facts and comparisons, 56th edn. Wolters Kluwer Health, St. Louis, p 619

    Google Scholar 

  100. Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245. doi:10.1002/bit.23108

    Article  Google Scholar 

  101. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55(22):9142–9148. doi:10.1021/jf071692e

    Article  Google Scholar 

  102. Zhang J, Luo J, Tong D, Zhu L, Dong L, Hu C (2010) The dependence of pyrolysis behavior on the crystal state of cellulose. Carbohydr Polym 79(1):164–169. doi:10.1016/j.carbpol.2009.07.038

    Article  Google Scholar 

  103. Haerens K, Van Deuren S, Matthijs E, Van Der Bruggen B (2010) Challenges for recycling ionic liquids by using pressure driven membrane processes. Green Chem 12(12):2182–2188. doi:10.1039/c0gc00406e

    Article  Google Scholar 

  104. Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2010) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 108(3):511–520. doi:10.1002/bit.23014

    Article  Google Scholar 

  105. Abu-Eishah SI (2011) Ionic liquids recycling for reuse. In: Handy ST. Rijeka (ed) Ionic liquids—classes and properties. InTech, pp 239–272

    Google Scholar 

  106. Yuan T, He J, Xu F, Sun R (2010) A new vision in the research of biomass resources: complete-lignocellulose-dissolution system. Prog Chem 22(0203):472–481

    Google Scholar 

  107. Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100(14):3570–3575. doi:10.1016/j.biortech.2009.02.040

    Article  Google Scholar 

  108. Li Q, Jiang X, He Y, Li L, Xian M, Yang J (2010) Evaluation of the biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification. Appl Microbiol Biotechnol 87(1):117–126. doi:10.1007/s00253-010-2484-8

    Google Scholar 

  109. Shafiei M, Karimi K, Taherzadeh MJ (2010) Pretreatment of spruce and oak by N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresour Technol 101(13):4914–4918. doi:10.1016/j.biortech.2009.08.100

    Article  Google Scholar 

  110. Kuo CH, Lee CK (2009) Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresour Technol 100(2):866–871. doi:10.1016/j.biortech.2008.07.001

    Article  Google Scholar 

  111. Hamilton TJ, Dale BE, Ladisch MR, Tsao GT (1984) Effect of ferric tartrate/sodium hydroxide solvent pretreatment on enzyme hydrolysis of cellulose in corn residue. Biotechnol Bioeng 26(7):781–787. doi:10.1002/bit.260260724

    Article  Google Scholar 

  112. Sathitsuksanoh N, Zhu Z, Ho TJ, Bai MD, Zhang YHP (2009) Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Bioresour Technol 101(13):4926–4929. doi:10.1016/j.biortech.2009.09.081

    Google Scholar 

  113. Moxley G, Zhu Z, Zhang YHP (2008) Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J Agric Food Chem 56(17):7885–7890. doi:10.1021/jf801303f

    Article  Google Scholar 

  114. Sathitsuksanoh N, Zhu Z, Templeton N, Rollin JA, Harvey SP, Zhang YHP (2009) Saccharification of a potential bioenergy crop, Phragmites australis (common reed), by lignocellulose fractionation followed by enzymatic hydrolysis at decreased cellulase loadings. Ind Eng Chem Res 48(13):6441–6447. doi:10.1021/ie900291s

    Article  Google Scholar 

  115. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol 96(18):2026–2032. doi:10.1016/j.biortech.2005.01.018

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Chinese Academy of Sciences (BairenJihua and Knowledge innovation key project (KSCX2-YW-G-075)), Yunnan Provincial Government (Baiming Haiwai Gaocengci Rencai Jihua and Provincial Natural Science Foundation), and China National Natural Science Foundation (No: 21076220). One of the authors (C. XU) would like to acknowledge the funding from Natural Science and Engineering Research Council of Canada (NSERC) through the Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tian, X., Fang, Z., Xu, C. (2013). Status and Perspective of Organic Solvent Based Pretreatment of Lignocellulosic Biomass for Enzymatic Saccharification. In: Fang, Z. (eds) Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32735-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32735-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32734-6

  • Online ISBN: 978-3-642-32735-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics